Kernel-Based Laplacian Smoothing Method for 3D Mesh Denoising

  • Hicham Badri
  • Mohammed El Hassouni
  • Driss Aboutajdine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7340)


In this paper, we present an improved Laplacian smoothing technique for 3D mesh denoising. This method filters directly the vertices by updating their positions. Laplacian smoothing process is simple to implement and fast, but it tends to produce shrinking and oversmoothing effects. To remedy this problem, firstly, we introduce a kernel function in the Laplacian expression. Then, we propose to use a linear combination of denoised instances. This combination aims to reduce the number of iterations of the desired method by coupling it with a technique that leads to oversmoothing. Experiments are conducted on synthetic triangular meshes corrupted by Gaussian noise. Results show that we outperform some existing methods in terms of objective and visual quality.


  1. 1.
    Zhang, Y., Ben Hamza, A.: Vertex-Based Diffusion for 3-D Mesh Denoising. IEEE Transactions on Image Processing 16(4) (April 2007)Google Scholar
  2. 2.
    El Hassouni, M., Aboutajdine, D.: 3D-Mesh denoising using an improved vertex based anisotropic diffusion. International Journal of Computer Science and Information Security (IJCSIS) 8(2) (2010)Google Scholar
  3. 3.
    Field, D.: Laplacian smoothing and Delauney triangulations. Comm. App. Num. Meth. 4, 709–712 (1988)zbMATHCrossRefGoogle Scholar
  4. 4.
    Taubin, G.: Linear Anisotropic Mesh Filtering. Res. Rep. RC2213 IBM (2001)Google Scholar
  5. 5.
    Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proc. SIGGRAPH, pp. 279–286 (2000)Google Scholar
  6. 6.
    Mashiko, T., Yagou, H., Wei, D., Ding, Y., Wu, G.: 3D Triangle Mesh Smoothing via Adaptive MMSE Filtering. In: Proceedings of the Fourth International Conference on Computer and Information Technology (CIT 2004), pp. 734–740 (2004)Google Scholar
  7. 7.
    Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)CrossRefGoogle Scholar
  8. 8.
    Taubin, G.: A signal processing approach to fair surface design. In: Proc. SIGGRAPH, pp. 351–358 (1995)Google Scholar
  9. 9.
    Desbrun, M., Meyer, M., Schroder, P., Barr, A.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proc. SIGGRAPH, pp. 317–324 (1999)Google Scholar
  10. 10.
  11. 11.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proc. SIGGRAPH, pp. 317–324 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hicham Badri
    • 1
  • Mohammed El Hassouni
    • 1
    • 2
  • Driss Aboutajdine
    • 1
  1. 1.LRIT, Faculty of ScienceUniversity Mohammed V -AgdalRabatMorocco
  2. 2.DESTEC-FLSHRUniversity Mohammed V -AgdalRabatMorocco

Personalised recommendations