Satellite Image Classification Using a Divergence-Based Fuzzy c-Means Algorithm

  • Dong-Chul Park
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7340)


A satellite image classifier scheme by using a Fuzzy c-Means (FcM) algorithm is proposed in this paper. The FcM algorithm adopted in this paper is a Gradient-based FcM with Divergence measure (GFcM(D)) and it utilizes the Divergence measure to exploit the statistical nature of the image data and thereby improves the classification accuracy. Experiments and results on a set of satellite images demonstrate that the proposed GFcM(D)-based classifier outperforms conventional algorithms such as the traditional Self-Organizing Map (SOM) and Fuzzy c-Means (FcM) in terms of classification accuracy.


Satellite Image Discrete Cosine Transform Image Class Code Vector Harbor Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kohonen, T.: The Self-Organizing Map. Proc. of IEEE 78, 1464–1480 (1990)CrossRefGoogle Scholar
  2. 2.
    Hartigan, J.: Clustering Algorithms. Wiley, New York (1975)zbMATHGoogle Scholar
  3. 3.
    Bezdek, J.C.: A convergence theorem for the fuzzy ISODATA clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intel., 1–8 (1980)Google Scholar
  4. 4.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)zbMATHCrossRefGoogle Scholar
  5. 5.
    Windham, M.P.: Cluster Validity for the Fuzzy cneans clustering algorithm. IEEE Trans. Pattern Anal. Mach. Intel., 357–363 (1982)Google Scholar
  6. 6.
    Park, D.C., Dagher, I.: Gradient Based Fuzzy c-Means Algorithm. In: Proc. of IEEE Int. Conf. on Neural Networks, pp. 1626–1631 (1994)Google Scholar
  7. 7.
    Looney, C.: Pattern Recognition Using Neural Networks, pp. 252–254. Oxford University Press, New York (1997)Google Scholar
  8. 8.
    Park, D.-C.: Classification of MPEG VBR Video Data Using Gradient-Based FCM with Divergence Measure. In: Wang, L., Jin, Y. (eds.) FSKD 2005. LNCS (LNAI), vol. 3613, pp. 475–483. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Park, D.-C., Nguyen, D.-H., Beack, S.-H., Park, S.: Classification of Audio Signals Using Gradient-Based Fuzzy c-Means Algorithm with Divergence Measure. In: Ho, Y.-S., Kim, H.-J. (eds.) PCM 2005. LNCS, vol. 3767, pp. 698–708. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Park, D.-C., Woo, D.-M.: Image Classification Using Gradient-Based Fuzzy c-Means with Divergence Measure. In: Proc. of IJCNN, pp. 2520–2524 (2008)Google Scholar
  11. 11.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press Inc. (1990)Google Scholar
  12. 12.
    Daugman, J.G.: Complete Discrete 2D Gabor Transform by Neural Networks for Image Analysis and Compression. IEEE Trans. Acoust., Speech, and Signal Processing 36, 1169–1179 (1988)zbMATHCrossRefGoogle Scholar
  13. 13.
    Pun, C.M., Lee, M.C.: Extraction of Shift Invariant Wavelet Features for Classification of Images with Different Sizes. IEEE Trans. Pattern Anal. Mach. Intel. 26(9), 1228–1233 (2004)CrossRefGoogle Scholar
  14. 14.
    Huang, Y.L., Chang, R.F.: Texture Features for DCT-Coded Image Retrieval and Classification. In: Proc. of IEEE ICASSP, vol. 6, pp. 3013–3016 (1999)Google Scholar
  15. 15.
    Park, D.-C.: Classification of Satellite Images Using Partitioned Feature-based Classifier Model. In: Proc. of ICISA (2011)Google Scholar
  16. 16.
    Park, D.-C., Jeong, T., Lee, Y., Min, S.-Y.: Satellite Image Classification Using a Classifier Integration Model. In: Proc. of AICCSA, pp. 90–94 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dong-Chul Park
    • 1
  1. 1.Dept. of Electronics EngineeringMyong Ji UniversityKorea

Personalised recommendations