Image Quality Assessment Measure Based on Natural Image Statistics in the Tetrolet Domain

  • Abdelkaher Ait Abdelouahad
  • Mohammed El Hassouni
  • Hocine Cherifi
  • Driss Aboutajdine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7340)


This paper deals with a reduced reference (RR) image quality measure based on natural image statistics modeling. For this purpose, Tetrolet transform is used since it provides a convenient way to capture local geometric structures. This transform is applied to both reference and distorted images. Then, Gaussian Scale Mixture (GSM) is proposed to model subbands in order to take account statistical dependencies between tetrolet coefficients. In order to quantify the visual degradation, a measure based on Kullback Leibler Divergence (KLD) is provided. The proposed measure was tested on the Cornell VCL A-57 dataset and compared with other measures according to FR-TV1 VQEG framework.


RRIQA Tetrolet transform natural image statistics Gaussian Scale Mixture 


  1. 1.
    Wang, Z., Simoncelli, E.P.: Reduced-reference image quality assessment using a wavelet-domain natural image statistic model. In: Proc. of SPIE Human Vision and Electronic Imaging, vol. 5666, pp. 149–159 (2005)Google Scholar
  2. 2.
    Tao, D., Li, X., Lu, W., Gao, X.: Reduced-reference IQA in contourlet domain. IEEE Transactions on Systems, Man, and Cybernetics, PartB: Cybernetics 39(6), 1623–1627 (2009)CrossRefGoogle Scholar
  3. 3.
    Li, Q., Wang, Z.: Reduced-reference image quality assessment using divisive normalization-based image representation. IEEE Journal of Selected Topics in Signal Processing 3(2), 202–211 (2009)CrossRefGoogle Scholar
  4. 4.
    Xue, W., Mou, X.: Reduced reference image quality assessment based on weibull statistics. In: The International Workshop on Quality of Multimedia Experience (QoMEx), pp. 1–6 (2010)Google Scholar
  5. 5.
    Maalouf, A., Larabi, M.C., Fernandez-Maloigne, C.: A grouplet-based reduced reference image quality assessment. In: The International Workshop on Quality of Multimedia Experience(QoMEx), pp. 59–63 (2009)Google Scholar
  6. 6.
    Krommweh, J.: Tetrolet transform: A new adaptive haar wavelet algorithm for sparse image representation. Journal of Visual Communication and Image Representation 21(4), 364–374 (2010)CrossRefGoogle Scholar
  7. 7.
    Golomb, S.W.: Polyominoes: puzzles, patterns, problems, and packings. Princeton Univ. Pr. (1996)Google Scholar
  8. 8.
    Simoncelli, E.P.: Modeling the joint statistics of images in the wavelet domain. In: Proc. SPIE, vol. 3813, pp. 188–195 (1999)Google Scholar
  9. 9.
    Boubchir, L., Fadili, J.M.: Multivariate statistical modeling of images with the curvelet transform. In: Proc. IEEE Conf. on Signal Processing and Its Applications, pp. 747–750 (2005)Google Scholar
  10. 10.
    Wainwright, M.J., Simoncelli, E.P.: Scale mixtures of gaussians and the statistics of natural images. Advances in Neural Information Processing Systems 12(1), 855–861 (2000)Google Scholar
  11. 11.
    Chandler, D.M., Hemami, S.S.: Cornell-vcl a57 database (2007),
  12. 12.
    Rohaly, A.M., Libert, J., Corriveau, P., Webster, A., et al.: Final report from the video quality experts group on the validation of objective models of video quality assessment, ITU-T Standards Contribution COM, pp. 9–80Google Scholar
  13. 13.
    Wang, Z., Wu, G., Sheikh, H.R., Simoncelli, E.P., Yang, E.H., Bovik, A.C.: Quality-aware images. IEEE Transactions on Image Processing 15(6), 1680–1689 (2006)CrossRefGoogle Scholar
  14. 14.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Abdelkaher Ait Abdelouahad
    • 1
  • Mohammed El Hassouni
    • 2
  • Hocine Cherifi
    • 3
  • Driss Aboutajdine
    • 1
  1. 1.LRIT URACUniversity of Mohammed V-AgdalMorocco
  2. 2.DESTEC, FLSHRUniversity of Mohammed V-AgdalMorocco
  3. 3.Le2i-UMR CNRS 5158University of BurgundyDijonFrance

Personalised recommendations