Multi-model Approach for Multicomponent Texture Classification

  • Ahmed Drissi El Maliani
  • Mohammed El Hassouni
  • Yannick Berthoumieu
  • Driss Aboutajdine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7340)


This paper concerns multicomponent texture classification. The aim is to provide a flexible model when wavelet subband coefficients of components do not have the same distributions. Example of such case is when color textures are represented in a perceptual color space. In this kind of representation, the separability between luminance and chrominance components have to be considered in the modeling process. The contribution of this work consists in proposing a multi-model based characterization for this type of multicomponent images. For this, two models M l and M c r are used in order to extract features from luminance and chrominance components, respectively. We discuss in detail and define the multi-model when textures are represented in the HSV color space as a special case of multicomponent analysis. Experimental results show that the proposed approach improves performances of the classification system when compared with existing methods.


Multicomponent textures Copula Rao distance 


  1. 1.
    Do, M., Vetterli, M.: Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Transactions on Image Processing 11, 146–158 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Kwitt, R., Uhl, A.: Image similarity measurement by Kullback-Leibler divergences between complex wavelet subband statistics for texture retrieval. In: 15th IEEE International Conference on Image Processing, ICIP 2008, pp. 933–936 (2008)Google Scholar
  3. 3.
    Verdoolaege, G., Scheunders, P.: Geodesics on the manifold of multivariate generalized gaussian distributions with an application to multicomponent texture discrimination. Int. J. Comput. Vision 95, 265–286 (2011)zbMATHCrossRefGoogle Scholar
  4. 4.
    Kwitt, R., Meerwald, P., Uhl, A.: Efficient texture Image Retrieval Using Copulas in a Bayesian Framework. IEEE Transactions on Image Processing 20, 2063–2077 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    El Maliani, A.D., El Hassouni, M., Lasmar, N.-E., Berthoumieu, Y., Aboutajdine, D.: Color Texture Classification Using Rao Distance between Multivariate Copula Based Models. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part II. LNCS, vol. 6855, pp. 498–505. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Kato, Z., Pong, T.C.: A Markov random field image segmentation model for color textured images. Image and Vision Computing 24(10), 1103–1114 (2006)CrossRefGoogle Scholar
  7. 7.
    Qazi, I.U.H., Alata, O., Burie, J.C., Fernandez- Maloigne, C.: Color spectral analysis for spatial structure characterization of textures in IHLS color space. Pattern Recognition 43(3), 663–675 (2010)zbMATHCrossRefGoogle Scholar
  8. 8.
    Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn. The Sparse Way. Academic Press (2008)Google Scholar
  9. 9.
    Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18, 837–842 (1996)CrossRefGoogle Scholar
  10. 10.
    Sklar, M.: Fonctions de répartition à n dimensions et leurs marges. Publications de l’institut de Statistique de l’Université de Paris 8, 229–231 (1959)MathSciNetGoogle Scholar
  11. 11.
    Sakji-Nsibi, S., Benazza-Benyahia, A.: Fast scalable retrieval of multispectral images with kullback-leibler divergence. In: Proceedings of the 17th IEEE Interational Conference on Image Processing (ICIP 2010), Hong Kong, pp. 2333–2336 (2010)Google Scholar
  12. 12.
    Joe, H.: Multivariate Models and Dependence Concepts. Monographs on Statistics and Applied Probability. Chapman & Hall (1997)Google Scholar
  13. 13.
    Stitou, Y., Berthoumieu, Y., Lasmar, N.: Copulas based multivariate gamma modeling for texture classification. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2009, Taipei, Taiwan, April 19-24, pp. 1045–1048 (2009)Google Scholar
  14. 14.
    MIT vision and modeling group,
  15. 15.
    Ceolin, S., Hancock, E.R.: Characterising facial gender difference using fisher-rao metric. In: Proceedings of the 2010 20th International Conference on Pattern Recognition, ICPR 2010, pp. 4308–4311 (2010)Google Scholar
  16. 16.
    Reverter, F., Oller, J.M.: Computing the Rao distance for Gamma distributions. Journal of Computational and Applied Mathematics 157, 155–167 (2003)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ahmed Drissi El Maliani
    • 1
  • Mohammed El Hassouni
    • 2
  • Yannick Berthoumieu
    • 3
  • Driss Aboutajdine
    • 1
  1. 1.LRIT, Unité Associée au CNRST (URAC 29)Mohammed V UniversityAgdalMorocco
  2. 2.DESTEC, FLSHRMohammed V UniversityAgdalMorocco
  3. 3.IMS- Groupe Signal- UMR 5218 CNRS, ENSEIRBUniversity BordeauxFrance

Personalised recommendations