Advertisement

Eigen Combination of Colour and Texture Informations for Image Segmentation

  • D. Attia
  • C. Meurie
  • Y. Ruichek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7340)

Abstract

In this paper, we present a new combination of colour and texture informations for image segmentation. This technique is based on principal components analysis of a 3D points cloud, followed by an eigenvalues analysis. A set of colour gradients (morphological, Di-Zenzo) and texture gradients (Gabor, three Haralick attributes, Alternative Sequential Filter (ASF)) are used to test the proposed combination. The segmentation is performed using a hybrid gradient based watershed algorithm. The major contribution of this work consists in combining locally colour and texture informations using an adaptive and non parametric approach. The proposed method is tested on 100 images from the Berkley dataset [1] and evaluated with the Mean Square Error (MSE), the Variation of Information (VI) and the Probabilistic Rand Index (PRI).

Keywords

Mean Square Error Image Segmentation Segmentation Result Texture Information Eigenvalue Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Int’l Conf. Computer Vision (2001)Google Scholar
  2. 2.
    Lo, E.H.S., Pickering, M.R., Frater, M.R., Arnold, J.F.: Image segmentation using invariant texture features from the double dyadic dual-tree complex wavelet transform. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 1, pp. I–609–I–612 (2007)Google Scholar
  3. 3.
    Paulhac, L., Makris, P., Gregoire, J.-M., Ramel, J.-Y.: Descripteurs de textures pour la segmentation dimages echographiques 3d. Congrès des Jeunes Chercheurs en Vision par Ordinateur, ORASIS 2009 (2009)Google Scholar
  4. 4.
    Liu, B., Xian: A texture feature fusion-based segmentation method of sar images. In: Second International Conference on Intelligent Human-Machine Systems and Cybernetics (2010)Google Scholar
  5. 5.
    Meyer, F.: Color image segmentation. In: International Conference on Image Processing and its Applications, pp. 303–306 (1992)Google Scholar
  6. 6.
    Kurugollu, F., Sankur, B., Harmanci, A.: Color image segmentation using histogram multithresholding and fusion. Image Vision Computing 19, 915–928 (2001)CrossRefGoogle Scholar
  7. 7.
    Delon, J., Desolneux, A., Lisani, J.L., Petro, A.B.: Color image segmentation using acceptable histogram segmentation. In: Pattern Recognition and Image Analysis, pp. 239–246 (2006)Google Scholar
  8. 8.
    Kiranyaz, S., Birinci, M., Gabbouj, M.: Perceptual color descriptor based on spatial distribution: a top-down approach. Image and Vision Computing 28, 1309–1326 (2010)CrossRefGoogle Scholar
  9. 9.
    Dubuisson-Jolly, M.-P., Gupta, A.: Color and texture fusion: application to aerial image segmentation and gis updating. Image and Vision Computer 18, 823–832 (2000)CrossRefGoogle Scholar
  10. 10.
    Chen, J., Pappas, N., Mojsilovic, A., Rogowitz, B.E.: Adaptive perceptual color-texture image segmentation. IEEE Transactions on Image Processing 14, 1–13 (2005)CrossRefGoogle Scholar
  11. 11.
    Ilea, D.E., Whelan, P.F.: Image segmentation based on the integration of colour-texture descriptors. Pattern Recognition 44, 2479–2501 (2011)zbMATHCrossRefGoogle Scholar
  12. 12.
    Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersions simulations. IEEE Transactions On Pattern Analysis and Machine Intelligence (PAMI) 13(16), 583–598 (1991)CrossRefGoogle Scholar
  13. 13.
    Shafarenko, L., Petrou, M., Kittler, J.: Automatic watershed segmentation of randomly textured color images. IEEE Transactions On Image Processing 6(11), 1530–1543 (1997)CrossRefGoogle Scholar
  14. 14.
    Palm, C., Keysers, D., Lehmann, T., Spitzer, K.: Gabor filtering of complex hue saturation images for color texture classification. In: Proceedings of the 5th Joint Conference on Information Science, pp. 45–49 (2000)Google Scholar
  15. 15.
    Palm, C., Lehmann, T.: Classification of color textures by gabor filtering. Machine Graphics & Vision International Journal 11, 195–219 (2002)Google Scholar
  16. 16.
    Haralick, R., Shanmugan, K., Dinstein, I.: Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics 3(6), 610–621 (1973)CrossRefGoogle Scholar
  17. 17.
    Majdoulayne, H.: Extraction de charactéristiques de texture pour la classification dimages satellites. Ph.D. dissertation, Université de Toulouse (2009)Google Scholar
  18. 18.
    Soille, P.: Morphological image analysis, 2nd edn. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  19. 19.
    Zenzo, S.D.: A note on the gradient of multi-image. Computer Vision, Graphics, and Image Processing 33, 116–125 (1986)zbMATHCrossRefGoogle Scholar
  20. 20.
    Angulo, J.: Morphological texture gradients. Application to colour+texture watershed segmentation. In: Proc. of the 8th International Symposium on Mathematical Morphology, pp. 399–410 (October 2007)Google Scholar
  21. 21.
    Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. University of California at Berkley, Tech. Rep., February 16 (2010), http://www.eecs.berkley.edu/Pubs/TechRpts/2010/EECS-2010-17.html
  22. 22.
    Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local broghtness, color and texture cues. IEEE Transactions On Pattern Analysis and Machine Intelligence 26, 530–549 (2004)CrossRefGoogle Scholar
  23. 23.
    Duby, C., Robin, S.: Analyse en composantes principales. Institut National Agronomique Paris - Grignon, Tech. Rep., département O.M.I.P, Institut National Agronomique Paris - Grignon (2006)Google Scholar
  24. 24.
    Gergaud, J.: Unité fondamentale: Algèbre linéaire: une application l’analyse en composantes principales. INP ENSAT, Tech. Rep. (2006)Google Scholar
  25. 25.
    Zeng, W., Zhang, Y.: A novel improvement to pca for image classification. In: International Conference on Computer Science and Service System (CSSS), pp. 1964–1967 (2011)Google Scholar
  26. 26.
    Du, Q., Zhu, W., Yang, H., Fowler, J.E.: Segmented principal component analysis for parallel compression of hyperspectral imagery. IEEE Geoscience and Remote Sensing Letters 6, 713–717 (2009)CrossRefGoogle Scholar
  27. 27.
    Ho, P.-M., Wong, T.-T., Leung, C.-S.: Compressing the illumination-adjustable images with principal componenet analysis. IEEE Transaction on Circuits and Systems for Video Technology 15, 355–364 (2005)CrossRefGoogle Scholar
  28. 28.
    Ilin, A., Raiko, T.: Practical approaches to principal componenet analysis in the presence of missing values. Journal of Machine Learning Research 11 (2010)Google Scholar
  29. 29.
    Meila, M.: Comparing clusterings: An axiomatic view. In: ICML (2005)Google Scholar
  30. 30.
    Unnikrisshnan, R., Pantofru, C., Hebert, M.: Toward objective evaluation of image segmentation algorithms. PAMI (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • D. Attia
    • 1
  • C. Meurie
    • 1
  • Y. Ruichek
    • 1
  1. 1.Institut Régional Supérieur du Travail Educatif et Social de Bourgogne, Laboratoire Systémes et TransportsUniversité de Technologie de Belfort-MontbéliardBelfort CedexFrance

Personalised recommendations