3D shape Retrieval Using Bag-of-Feature Method Basing on Local Codebooks

  • El Wardani Dadi
  • El Mostafa Daoudi
  • Claude Tadonki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7340)

Abstract

Recent investigations illustrate that view-based methods, with pose normalization pre-processing get better performances in retrieving rigid models than other approaches and still the most popular and practical methods in the field of 3D shape retrieval [9,10,11,12]. In this paper we present an improvement of the BF-SIFT method proposed by Ohbuchi et al [1]. This method is based on bag-of-features to integrate a set of features extracted from 2D views of the 3D objects using the SIFT (Scale Invariant Feature Transform [2]) algorithm into a histogram using vector quantization which is based on a global visual codebook. In order to improve the retrieval performances, we propose to associate to each 3D object its local visual codebook instead of a unique global codebook. The experimental results obtained on the Princeton Shape Benchmark database [3] show that the proposed method performs better than the original method.

Keywords

3D Content-based Shape Retrieval bag-of-features SIFT vector quantization codebook 

References

  1. 1.
    Axenopoulos, A., Daras, P., Dutagaci, H., Furuya, T., Godil, A., Ohbuchi, R.: SHREC 2009 - Shape Retrieval Contest of Partial 3D Models. In: Eurographics Workshop on 3D Object Retrieval (2009)Google Scholar
  2. 2.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int’l Journal of Computer Vision 60(2) (November 2004)Google Scholar
  3. 3.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton Shape Benchmark. In: Proc. SMI 2004, pp. 167–178 (2004), http://shape.cs.princeton.edu/search.html
  4. 4.
    Tangelder, J.W.H., Veltkamp, R.C.: A survey of content based 3D shape retrieval methods. Multimedia Tools and Applications 39(3), 441–471 (2008)CrossRefGoogle Scholar
  5. 5.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Shape Modeling and Applications Conference, SMI 2004, Genova, Italy, pp. 167–178. IEEE (June 2004)Google Scholar
  6. 6.
    Zaharia, T., Prêteux, F.: 3D versus 2D/3D shape descriptors: A comparative study. In: SPIE Conf. on Image Processing: Algorithms and Systems III - IS &T/SPIE Symposium on Electronic Imaging, Science and Technology 2003, San Jose, CA, vol. 5298 (January 2004)Google Scholar
  7. 7.
    Bustos, B., Keim, D.A., Schreck, T., Vranic, D.: An experimental comparison of feature-based 3D retrieval methods. In: 2nd Int. Symp. on 3D Data Processing, Visualization, and Transmission (3DPVT 2004), Thessaloniki, Greece (September 2004)Google Scholar
  8. 8.
    Del Bimbo, A., Pala, P.: Content-based retrieval of 3D models. ACM Trans. Multimedia Com.Google Scholar
  9. 9.
    Daras, P., Axenopoulos, A.: A 3D shape retrieval framework supporting multimodal queries. International Journal of Computer Vision (2010)Google Scholar
  10. 10.
    Chaouch, M., Verroust-Blondet, A.: A new descriptor for 2D depth image indexing and 3D model retrieval. In: Proc. ICIP 2007, vol. 6, pp. 373–376 (2007)Google Scholar
  11. 11.
    Lian, Z., Rosin, P.L., Sun, X.: Rectilinearity of 3D meshes. International Journal of Computer Vision 89, 130–151 (2010)CrossRefGoogle Scholar
  12. 12.
    Lian, Z., Godil, A., Sun, X.: Visual Similarity based 3D Shape Retrieval Using Bag-of-Features. In: IEEE International Conference on Shape Modeling and Applications, SMI (2010)Google Scholar
  13. 13.
    Ohbuchi, R., Osada, K., Furuya, T., Banno, T.: Salient local visual features for shape-based 3D model retrieval, 93-102. In: Proc. IEEE Shape Modeling International, SMI (2008)Google Scholar
  14. 14.
    Tangelder, J., Veltkamp, R.C.: A Survey of Content Based 3D Shape Retrieval Methods. In: Proc. SMI 2004, pp. 145–156 (2004)Google Scholar
  15. 15.
    Iyer, M., Jayanti, S., Lou, K., Kalyanaraman, Y., Ramani, K.: Three Dimensional Shape Searching: State-of-the-art Review and Future Trends. Computer Aided Design 5(15), 509–530 (2005)CrossRefGoogle Scholar
  16. 16.
    Veltkamp, R.C., et al.: SHREC 2006 3D Shape Retrieval Contest, Utrecht University Dept. Information and Computing Sciences Technical Report UU-CS-2006-030 (ISSN: 0924-3275)Google Scholar
  17. 17.
    Veltkamp, R.C., ter Harr, F.B.: SHREC 2007 3D Shape Retrieval Contest, Dept. of Info. and Comp. Sci., Utrecht University, Technical Report UU-CS-2007-015Google Scholar
  18. 18.
    Chaouch, M., Verroust-Blondet, A.: Alignment of 3D models. Graphical Models 71, 63–76 (2009)CrossRefGoogle Scholar
  19. 19.
    Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms, http://www.vlfeat.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • El Wardani Dadi
    • 1
  • El Mostafa Daoudi
    • 1
  • Claude Tadonki
    • 2
  1. 1.Faculty of Sciences, LaRi LaboratoryUniversity of Mohammed FirstOujdaMorocco
  2. 2.Laboratory of Research in Computer, Math & SystemMines ParisTechFontainebleauFrance

Personalised recommendations