Advertisement

Brain MRI Image Segmentation in View of Tumor Detection: Application to Multiple Sclerosis

  • Rabeb Mezgar
  • Mohamed Ali Mahjoub
  • Randa Salem
  • Abdellatif Mtibaa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7340)

Abstract

Multiple Sclerosis (MS) is an inflammatory and demyelization disease that causes the disorder of the central nervous system. Magnetic resonance imaging (MRI) becomes the most important means for a better understanding of the disease. A variety of methods to segment these lesions are available to make the lesions detection less fastidious. So, we use a robust algorithm on EM algorithm that proposes an original detection scheme for outliers. The results obtained are very satisfactory.

Keywords

EM algorithm Multiple sclerosis Magnetic Resonance Imaging Levels-Sets 

References

  1. 1.
    Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society 39(1), 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Schroeter, P., Vesin, J.M., Langenberger, T., Meuli, R.: Robust Parameter Estimation of Intensity Distributions for Brain Magnetic Resonance Images. IEEE Transactions on Medical Imaging 17(2), 172–186 (1998)CrossRefGoogle Scholar
  3. 3.
    Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, A., Suetens, P.: Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Transactions on Medical Imaging 20(8), 677–688 (2001)CrossRefGoogle Scholar
  4. 4.
    Dugas-Phocion, G., González, M.A., Lebrun, C., Chanalet, S., Bensa, C., Malandain, G., Ayache, N.: Hierarchical Segmentation of Multiple Sclerosis Lesions in Multi-sequence MRI. In: ISBI 2004, Arlington, USA (April 2004)Google Scholar
  5. 5.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. of Computer Vision 22, 61–79 (1997)zbMATHCrossRefGoogle Scholar
  6. 6.
    Wells III, W.M., Grimson, W.E.L., Kikinis, R., Jolesz, F.A.: Adaptive Segmentation of MRI Data. In: Ayache, N. (ed.) CVRMed 1995. LNCS, vol. 905, pp. 59–69. Springer, Heidelberg (1995)Google Scholar
  7. 7.
    Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. IEEE Transactions on Medical Imaging, 885–896 (October 1999)Google Scholar
  8. 8.
    Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Transactions on Medical Imaging 897–908 (October 1999)Google Scholar
  9. 9.
    Dugas-Phocion, G.: Segmentation d’IRM Cérébrales Multi-Séquences et Application à la Sclérose en Plaques, Thèse de doctorat (2006)Google Scholar
  10. 10.
    McLachlan, G., Peel, D.: Finite mixture models. Wiley Series in Probability and Statistics (2000)Google Scholar
  11. 11.
    Flandin, G.: Utilisation d’informations géométriques pour l’analyse statistique des données d’IRM fonctionnelle. PhD thesis, Université de Nice-Sophia Antipolis (April 2004)Google Scholar
  12. 12.
    Mahjoub, M.A., Kalti, K.: Image Segmentation by Adaptive Distance Based on EM Algorithm. In: IJACSA, pp. 19–24 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rabeb Mezgar
    • 1
  • Mohamed Ali Mahjoub
    • 2
  • Randa Salem
    • 3
  • Abdellatif Mtibaa
    • 1
  1. 1.Laboratory of Electronics and Microelectronics, Faculty of Sciences of MonastirUniversity of MonastirTunisia
  2. 2.Research Unit SAGE (Advanced Systems in Electrical Engineering) EnisoUniversity of SousseTunisia
  3. 3.Laboratory of interventional RadiologyUniversity of MonastirTunisia

Personalised recommendations