Matching Noisy Outline Contours Using a Descriptor Reduction Approach

  • Saliha Aouat
  • Slimane Larabi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7340)

Abstract

Shape Matching is an important area in computer vision researches. We propose in this paper a method to match two outline shapes. Assuming that shapes are stored in the database using their textual descriptors, an iterative process is used to reduce descriptors. After the reduction process, the textual descriptors can be compared in order to perform the matching process. The Textual smoothing is done by applying transformations and reductions of the textual descriptors of shapes to be matched.

Keywords

Descriptors matching smoothing reduction Textual descriptors 

References

  1. 1.
    Trinh, N.H., Kimia, B.B.: Skeleton Search: Category-Specific Object Recognition and Segmentation Using a Skeletal Shape Model. IJCV 94(2), 215–240 (2011)CrossRefGoogle Scholar
  2. 2.
    Sclaroff, S.: Deformable prototypes fpr encoding shapes categories in image databases. Pattern Recognition 30(4) (1997)Google Scholar
  3. 3.
    Mokhtarian, F., Mackworth, A.K.: A theory of multiscale, curvature-based shape representation for planar curves. IEEE PAMI 14(8) (August 1992)Google Scholar
  4. 4.
    Mokhtarian, F.: Silhouette-Based isolated object recognition through curvature scale space. IEEE PAMI 17(5) (1995)Google Scholar
  5. 5.
    Ma, T., Latecki, L.J.: From partial matching through local deformation to robust global shape similarity for object detection. In: CVPR, pp. 1441–1448 (2011)Google Scholar
  6. 6.
    Sethi, A., Renaudie, D., Kriegman, D., Ponce, J.: Curve and surface duals and the recognition of curved 3D objects from their silhouettes. I.J.C.V. 58(1), 73–86 (2004)Google Scholar
  7. 7.
    Wang, X., Bai, X., Liu, W., Latecki, L.J.: Feature context for image classification and object detection. In: CVPR 2011, pp. 961–968 (2011)Google Scholar
  8. 8.
    Orrite, C., Herreo, J.E.: Shape matching of partially occluded curves invariant under projective transformation. Computer Vision and Image Understanding 93(1) (2004)Google Scholar
  9. 9.
    Koenderink, J.J., Doorn, V.: The internal representation of solid shape with respect to vision. Biol. Cyber. 32 (1976)Google Scholar
  10. 10.
    Cyr, C.M., Kimia, B.B.: A similarity-based aspect-graph approach to 3D object recognition. International Journal of Computer Vision 57(1), 5–22 (2004)CrossRefGoogle Scholar
  11. 11.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on P.A.M.I. 24(24) (2002)Google Scholar
  12. 12.
    Ruberto, C.D.: Recognition of shapes by attributed skeletal graphs. Pattern Recognition 37(1), 21–31 (2004)CrossRefGoogle Scholar
  13. 13.
    Zhu, S.C., Yuille, A.L.: FORMS: A flexible object recognition and modeling system. In: Fifth International Conference on Computer Vision, June 20-23. M.I.T., Cambridge (1995)Google Scholar
  14. 14.
    Siddiqi, K., Kimia, B.B.: A shock grammar for recognition. In: Conference of Computer Vision and Pattern Recognition (1996)Google Scholar
  15. 15.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(5) (May 2004)Google Scholar
  16. 16.
    Geiger, D., Liu, L., Kohn, R.V.: Representation and self-similarity of shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(1) (January 2003)Google Scholar
  17. 17.
    Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37(1), 1–19 (2004)MATHCrossRefGoogle Scholar
  18. 18.
    Campbell, R.J., Flynn, P.J.: A survey of free-form object representation and recognition techniques. Computer Vision and Image Understanding 81, 166–210 (2001)MATHCrossRefGoogle Scholar
  19. 19.
    Larabi, S., Bouagar, S., Trespaderne, F.M., de la Fuente Lopez, E.: LWDOS: Language for Writing Descriptors of Outline Shapes. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 1014–1021. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Aouat, S., Larabi, S.: Matching Descriptors of Noisy Outline Shapes. Int. Journal of Image and Graphics (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Saliha Aouat
    • 1
  • Slimane Larabi
    • 1
  1. 1.LRIA Laboratory, Computer Science DepartmentUSTHB UniversityAlgeria

Personalised recommendations