Texture Analysis for Trabecular Bone X-Ray Images Using Anisotropic Morlet Wavelet and Rényi Entropy

  • Ahmed Salmi EL Boumnini El Hassani
  • Mohammed El Hassouni
  • Rachid Jennane
  • Mohammed Rziza
  • Eric Lespessailles
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7340)


In this paper, we propose a new method based on texture analysis for the early diagnosis of bone disease such as osteoporosis. Our proposed method is based on a combination of four methods. First, bone X-ray images are enhanced using the algorithm of Retinex. Then, the enhanced images are analyzed using the fully anisotropic Morlet wavelet. This step is followed by the quantification of the anisotropy of the images using the Rényi entropy. Finally, the Rényi entropies are used as entries for a neural network. Applied on two different populations composed of osteoporotic (OP) patients and control (CT) subjects, a classification rate of 95% is achieved which provides a good discrimination between OP patients and CT subjects.


Texture Analysis Receiver Operating Characteristic Curve Local Binary Pattern Area Under Curve Morlet Wavelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Johnell, O.: The socioeconomic burden of fractures: today and in the 21st century. Am. J. Med. 103(2A), 20–25 (1997)CrossRefGoogle Scholar
  2. 2.
    Cooper, C., Campion, G., Melton 3rd, L.J.: Hip fractures in the elderly: a world-wide projection. Osteoporos Int. 2(6), 285–289 (1992)CrossRefGoogle Scholar
  3. 3.
    Dempster, D.W.: The contribution of trabecular architecture to cancellous bone quality. J. Bone Miner. Res. 15(1), 20–23 (2000)CrossRefGoogle Scholar
  4. 4.
    Sevestre-Ghalila, S., Benazza-Benyahia, A., Ricordeau, A., Mellouli, N., Chappard, C., Benhamou, C.L.: Texture Image Analysis for Osteoporosis Detection with Morphological Tools. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 87–94. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Tuceryan, M., Jain, A.K.: Texture analysis, in the handbook of pattern recognition and computer vision, 2nd edn. (1998)Google Scholar
  6. 6.
    Petrou, M., Sevilla, P.G.: Image processing: Dealing with texture (2006)Google Scholar
  7. 7.
    Benhamou, C.L., Poupon, S., Lespessailles, E., Loiseau, S., Jennane, R., Siroux, V., Ohley, W., Pothuaud, L.: Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. J. Bone Miner. Res. 16(4), 697–704 (2001)CrossRefGoogle Scholar
  8. 8.
    Jennane, R., Ohley, W.J., Majumdar, S., Lemineur, G.: Fractal analysis of bone x-ray tomographic microscopy projections. IEEE Trans. Med. Imaging 20(5), 443–449 (2001)CrossRefGoogle Scholar
  9. 9.
    Pothuaud, L., Lespessailles, E., Harba, R., Jennane, R., Royant, V., Eynard, E., Benhamou, C.L.: Fractal Analysis of Trabecular Bone Texture on Radiographs: Discriminant Value in Postmenopausal Osteoporosis. Osteoporosis International 8, 618–625 (1998)CrossRefGoogle Scholar
  10. 10.
    Houam, L., Hafiane, A., Jennane, R., Boukrouche, A., Lespessailles, E.: Trabecular Bone Anisotropy Characterization Using 1D Local Binary Patterns. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010, Part I. LNCS, vol. 6474, pp. 105–113. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Pramudito, J.T., Soegijoko, S., Mengko, T.R., Muchtadi, F.I., Wachjudi, R.G.: Trabecular pattern analysis of proximal femur radiographs for osteoporosis detection. Journal of Biomedical and Pharmaceutical Engineering 1(1), 45–51 (2007)Google Scholar
  12. 12.
    Gabarda, S., Cristóbal, G., Rodríguez, P., Miravet, C., Del Cura, J.M.: A new Rényi entropy-based local image descriptor for object recognition. Society of Photo-Optical Instrumentation Engineers, vol. 7723 (2010)Google Scholar
  13. 13.
    Land, E.H., Mccann, J.J.: Lightness and Retinex Theory. Journal of the Optical Society of America 61, 1–11 (1971)CrossRefGoogle Scholar
  14. 14.
    Funt, B., Ciurea, F., McCann, J.: Retinex in matlab. Journal of Electronic Imaging 13(1), 48 (2004)CrossRefGoogle Scholar
  15. 15.
    Goupillaud, P., Grossmann, A., Morlet, J.: Cycle-octave and related transforms in seismic signal analysis. Geoexploration (former title) 23(1), 85–102 (1984)CrossRefGoogle Scholar
  16. 16.
    Antoine, J.P., Carrette, P., Murenzi, R., Piette, B.: Image analysis with two-dimensional continuous wavelet transform. Signal Processing 31(3), 241–272 (1993)zbMATHCrossRefGoogle Scholar
  17. 17.
    Kumar, P.: A wavelet based methodology for scale-space anisotropic analysis. Geophysical Research Letters 22(20), 2777–2780 (1995)CrossRefGoogle Scholar
  18. 18.
    Neupauer, R., Powell, K.: A fully-anisotropic morlet wavelet to identify dominant orientations in a porous medium. Computers and Geosciences 31(4), 465–471 (2005)CrossRefGoogle Scholar
  19. 19.
    Sahoo, P.: A thresholding method based on two-dimensional renyis entropy. Pattern Recognition 37(6), 1149–1161 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Rényi, A.: On Measures Of Entropy And Information. In: Proc of the 4th Berkeley Symp. on Math., Stat. and Prob., pp. 547–561 (1960)Google Scholar
  21. 21.
    Fawcett, T.: An introduction to roc analysis. Pattern Recogn. Lett. 27, 861–874 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ahmed Salmi EL Boumnini El Hassani
    • 1
  • Mohammed El Hassouni
    • 2
  • Rachid Jennane
    • 3
  • Mohammed Rziza
    • 1
  • Eric Lespessailles
    • 4
  1. 1.LRIT, Faculty of ScienceUniversity Mohammed V - AgdalRabatMorocco
  2. 2.DESTEC-FLSHRUniversity Mohammed V - AgdalRabatMorocco
  3. 3.PRISME LaboratoryUniversity of OrléansOrléansFrance
  4. 4.Hospital of Orleans, IPROSOrléansFrance

Personalised recommendations