Iris-Biometric Fuzzy Commitment Schemes under Signal Degradation

  • C. Rathgeb
  • A. Uhl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7340)


Low intra-class variability at high inter-class variability is considered a fundamental premise of biometric template protection, i.e. it is believed that biometric traits need to be captured under favorable conditions in order to provide practical recognition rates. In this work the impact of blur and noise to fuzzy commitment schemes is investigated and is compared to the impact observed on the accuracy of the underlying recognition scheme. Iris textures are successively blurred and noised in order to measure the robustness of iris-biometric fuzzy commitment schemes.


Signal Degradation Feature Extraction Method False Acceptance Rate False Rejection Rate Biometric Template 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rathgeb, C., Uhl, A.: A survey on biometric cryptosystems and cancelable biometrics. EURASIP Journal on Information Security 2011 (2011)Google Scholar
  2. 2.
    Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: Sixth ACM Conference on Computer and Communications Security, pp. 28–36 (1999)Google Scholar
  3. 3.
    Hao, F., Anderson, R., Daugman, J.: Combining Cryptography with Biometrics Effectively. IEEE Trans. on Computers 55, 1081–1088 (2006)CrossRefGoogle Scholar
  4. 4.
    Bringer, J., Chabanne, H., Cohen, G., Kindarji, B., Zémor, G.: Theoretical and practical boundaries of binary secure sketches. IEEE Trans. on Information Forensics and Security 3, 673–683 (2008)CrossRefGoogle Scholar
  5. 5.
    Rathgeb, C., Uhl, A.: Adaptive fuzzy commitment scheme based on iris-code error analysis. In: Proc. of the 2nd European Workshop on Visual Information Processing (EUVIP 2010), pp. 41–44 (2010)Google Scholar
  6. 6.
    Teoh, A., Kim, J.: Secure biometric template protection in fuzzy commitment scheme. IEICE Electron. Express 4, 724–730 (2007)CrossRefGoogle Scholar
  7. 7.
    Nandakumar, K.: A fingerprint cryptosystem based on minutiae phase spectrum. In: Proc. of IEEE Workshop on Information Forensics and Security, WIFS (2010)Google Scholar
  8. 8.
    Van der Veen, M., Kevenaar, T., Schrijen, G.J., Akkermans, T.H., Zuo, F.: Face biometrics with renewable templates. In: SPIE Proc. on Security, Steganography, and Watermarking of Multimedia Contents, vol. 6072, pp. 205–216 (2006)Google Scholar
  9. 9.
    Ao, M., Li, S.Z.: Near Infrared Face Based Biometric Key Binding. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 376–385. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Zhang, L., Sun, Z., Tan, T., Hu, S.: Robust Biometric Key Extraction Based on Iris Cryptosystem. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 1060–1069. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient Iris Recogntion by Characterizing Key Local Variations. IEEE Trans. on Image Processing 13, 739–750 (2004)CrossRefGoogle Scholar
  12. 12.
    Rathgeb, C., Uhl, A.: Systematic Construction of Iris-Based Fuzzy Commitment Schemes. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 940–949. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • C. Rathgeb
    • 1
  • A. Uhl
    • 1
  1. 1.Multimedia Signal Processing and Security Lab. Department of Computer SciencesUniversity of SalzburgSalzburgAustria

Personalised recommendations