Evolutionary Spectrum for Random Field and Missing Observations

  • Rachid Sabre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7340)


There are innumerable situations where the data observed from a non-stationary random field are collected with missing values. In this work a consistent estimate of the evolutionary spectral density is given where some observations are randomly missing.


spectral density non-stationary processes periodogram smoothing estimate oscillatory process 


  1. 1.
    Al-Shoshan, A.I., Chaparro, L.F.: Identification of non-minimum phase systems using evolutionary spectral theory. Signal Processing 55(1), 79–92 (1996)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bloomfield, P.: Spectral analysis with randomly missing observations. J. Roy. Statistical Society 32(3), 369–380 (1970)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cabrera, S.D., Flores, B.C., Thomas, G., Vega-Pineda, J.: Evolutionary spectral estimation based on adaptive use of weighted norms. In: Luk, F.T. (ed.) Advanced Signal Processing Algorithms, Architectures, and Implementations IV. SPIE, vol. 2027, pp. 168–179 (1993)Google Scholar
  4. 4.
    Caetano, M., Rodet, X.: Evolutionary spectral envelope morphing by spectral shape descriptors. In: Proceeding of International Computer Music Conferences (ICMC) (August 2009)Google Scholar
  5. 5.
    Feller, W.: An Introduction to Probability Theory and its Applications, 2nd edn., vol. I. Wiley, New York (1957)zbMATHGoogle Scholar
  6. 6.
    Jones, R.H.: Spectrum estimation with missing observations. Annals of the Institute of Statistical Mathematics 23(1), 387–398 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Hung, J.-C.: A genetic algorithm approach to the spectral estimation of time series with noise and missed observations. Information Sciences 178(24), 4632–4643 (2008)CrossRefGoogle Scholar
  8. 8.
    Kayhan, A.S., El-Jaroudi, A., Chaparro, L.F.: Data-Adaptive Evolutionary Spectral Estimation. IEEE Transactions on Signal Processing 43(1), 204–213 (1995)CrossRefGoogle Scholar
  9. 9.
    Kayhan, A.S., Amine, M.G.: Spatial evolutionary spectrum for DOA estimation and blind signal separation. IEEE Transactions on Signal Processing 48(3), 791–798 (2000)CrossRefGoogle Scholar
  10. 10.
    Mélard, G., de Schutter, A.H.: Contributions to evolutionary spectral theory. Journal of Time Series Analysis 10(1), 41–63 (1988)CrossRefGoogle Scholar
  11. 11.
    Messaci, F.: Estimation de la densité spectrale d’un processus en temps continu par échantillonnage poissonnien, Univ de Rouen (Thèse de 3 ème cycle) (1986)Google Scholar
  12. 12.
    Parzen, E.: On spectral analysis with missing observations and amplitude modulation. Sankhya, Series A 25, 383–392 (1963)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Broersen, P.M.T.: Automatic spectral analysis with missing data. Digital Signal Processing 16(6), 754–766 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Priestley, M.B.: Evolutionary spectra and non-stationary processes. J. Roy. Statist. Soc. Ser., B 27, 204–237 (1965)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Priestley, M.B.: Spectral analysis and time series. Probability and Mathematical Statistics. Academic Press (1981)Google Scholar
  16. 16.
    Rachdi, M., Sabre, R.: Mixed-spectra analysis for stationary random fields. Statistical Methods and Applications 18, 333–358 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sabre, R.: Spectral density estimation for stationary stable random fields. Journal Applications Mathematicae 23(2), 107–133 (1995)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Sabre, R.: Discrete estimation of spectral density for symmetric stable process. Statistica 2, 1–26 (2000)MathSciNetGoogle Scholar
  19. 19.
    Shah, S.I., Chaparro, L.F., El-Jaroudi, A., Furman, J.M.: Evolutionary Maximum Entropy Spectral Estimation and HeartRate Variability Analysis. Multidimensional Systems and Signal Processing 9(4), 453–458 (1998)zbMATHCrossRefGoogle Scholar
  20. 20.
    Tezcan, J.: Evolutionary Power Spectrum Estimation Using Harmonic Wavelets. Seismic Design and Analysis of Structures, 37–41 (2003)Google Scholar
  21. 21.
    Wang, Y., Stoica, P., Li, J., Marzetta, T.L.: Nonparametric spectral analysis with missing data via the EM algorithm. Digital Signal Processing 15(2) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rachid Sabre
    • 1
  1. 1.AgroSup/Laboratoire Le2iUniversité de BourgogneDijonFrance

Personalised recommendations