Maximizing Network Lifetime through Optimal Power Consumption in Wireless Sensor Networks

  • El Abdellaoui Saîd
  • Fakhri Youssef
  • Debbah Merouane
  • Aboutajdine Driss
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7340)

Abstract

Energy efficiency is a foremost concern in Wireless Sensor Networks (WSNs). It aims to maximize the network lifetime which is defined as the time duration until the battery depletion‎ of the first node. The aim of our approach is to provide the optimal transmission power taking into account the signal to noise ratio (SNR) constraint at the Fusion Center (FC) while guaranteeing the required performance. In this article, we address the lifetime maximization problem under non-orthogonal channels assuming two cases. In the first case, the nodes have the perfect knowledge of all channel gains. While in the second case, we propose several extensions to the unacknowledged channel gains by the nodes. In both cases, we consider that the nodes transmit their data to the FC over Quasi-Static Rayleigh fading Channel (QSRC). Simulation results show that the proposed optimal power allocation method maximizes the network lifetime better then the EP method.

Keywords

Energy-Efficiency WSNs MIMO Cooperative Cooperation Communication Optimal Power Allocation 

References

  1. 1.
    Ratnasamy, S., Estrin, D., Govindan, R., Karp, B., Yin, L., Shenker, S., Yu, F.: Data-centric storage in sensornets. In: Proceeding of the ACM SIGCOMM Computer Communication Review, Pittsburgh, PA, USA, pp. 137–142 (2002)Google Scholar
  2. 2.
    Choi, W., Shah, P., Das, S.K.: A Framework for Energy-Saving Data Gathering Using Two-Phase Clustering in Wireless Sensor Networks. In: Proceeding of the Mobile and Ubiquitous Systems, Boston, pp. 203–212 (2004)Google Scholar
  3. 3.
    Ephremides, A.: Energy concerns in wireless networks. IEEE Wireless Communications 9(4) (2002)Google Scholar
  4. 4.
    Belmega, E.V., Lasaulce, S., Debbah, M.: A survey on energy-efficient communications. In: IEEE Intl. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC 2010), Istanbul, Turkey, p. 289 (2010) (invited paper)Google Scholar
  5. 5.
    Cui, S., Goldsmith, A.J., Bahai, A.: Energy efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Jour. on Selected Areas in Comm. 22(6), 1089–1098 (2004)CrossRefGoogle Scholar
  6. 6.
    Nguyen, T., Berder, O., Sentieys, O.: Cooperative MIMO schemes optimal selection for wireless sensor networks. In: IEEE 65th Vehicular Technology Conference, pp. 85–89 (2007)Google Scholar
  7. 7.
    Winters, J.: The diversity gain of transmit diversity in wireless systems with Rayleigh fading. IEEE Transactions on Vehicular Technology 47(1), 119–123 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Thomas Hou, Y., Shi, Y., Hanif Sherali, D., Jeffrey Wieselthier, E.: Multicast Communications in Ad HocvNetworks Using Directional Antennas: A Lifetime-Centric Approach. IEEE Transactions on Vehicular Technology 56(3) (2007)Google Scholar
  9. 9.
    Chandrakasan, A.: Design considerations for distributed micro-sensor systems. In: Custom Integrated Circuits Conference (CICC), pp. 279–286 (1999)Google Scholar
  10. 10.
    Shih, E.: Physical layer driven protocol and algorithm design for energy-efficient wireless sensor networks. In: Proc. of the Seventh Annual ACM/IEEE International Conference on Mobile Computing and Networking, pp. 272–286 (2001)Google Scholar
  11. 11.
    Bian, F., Goel, A., Raghavendra, C.S., Li, X.: Energy-efficient broadcasting in wireless ad hoc networks: lower bounds and algorithms. JINet 3, 149–166 (2002)Google Scholar
  12. 12.
    Wei, H., Sasaki, H., Kubokawa, J.: A decoupled solution of hydro-thermal optimal power flow problem by means of interior point method and network programming. IEEE Transactions on Power Systems 13(2), 286–293 (1998)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Namin, F., Nosratinia, A.: Progmatic Lifetime maximization of cooperative Sensor Networks via a decomposition approoch. In: Acoustics, Speech and Signal Processing- Las Vegas, Nevada, U.S.A., vol. (4), p. 3017 (2008)Google Scholar
  15. 15.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)Google Scholar
  16. 16.
    Goudarzi, H., Pakravan, M.R.: Equal Power Allocation scheme for cooperative diversity. In: 4th IEEE/IFIP International Conference, Tashkent-uzbekistan, pp. 1–5 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • El Abdellaoui Saîd
    • 1
  • Fakhri Youssef
    • 1
    • 2
  • Debbah Merouane
    • 3
  • Aboutajdine Driss
    • 1
  1. 1.LRIT, Unité Associée au CNRST (URAC 29), Faculty of SciencesUniversity Mohammed V- AgdalRabatMorocco
  2. 2.LARIT, équipe Réseaux et Télécommunication, Faculty of SciencesUniversity Ibn TofailKenitraMorocco
  3. 3.Alcatel-Lucent Chair on Flexible Radio, SupelecGif-sur-Yvette CedexFrance

Personalised recommendations