Bayesian Image Matting Using Infrared and Color Cues

  • Layachi Bentabet
  • Hui Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7340)

Abstract

In this paper, we propose a new matting solution that combines the use of color and infrared cameras for matting applications involving human actors. The infrared camera facilitates the extraction of the initial trimap and provides additional information for the matte estimation. The approach proposed in this paper differs from the techniques proposed in the literature in many aspects. It employs thermal information for human actors, which proves to be useful and effective for matting when combined with color information. It also introduces a new technique for automatic trimap construction that is based on the temperature’s difference between the foreground actor and the background objects. Finally, the matting step is carried out using a Bayesian approach which combines the color and the infrared inputs into a single criterion. The matting results accuracy shows that our approach is capable of tackling digital image and video matting problems.

Keywords

Image matting trimap construction cues combination infrared imagery background subtraction 

References

  1. 1.
    Fishkin, K., Barsky, B.: A family of new algorithms for soft filling. ACM SIGGRAPH 18(3), 235–244 (1984)CrossRefGoogle Scholar
  2. 2.
    Porter, T., Duff, T.: Compositing digital images. ACM SIGGRAPH 18(3), 253–259 (1984)CrossRefGoogle Scholar
  3. 3.
    Smith, A., Blinn, J.: Blue screen matting. ACM SIGGRAPH 30, 259–268 (1996)Google Scholar
  4. 4.
    Sun, J., Li, Y., Kang, S.-B., Shum, H.-Y.: Flash matting. ACM SIGGRAPH 25(3), 772–778 (2006)CrossRefGoogle Scholar
  5. 5.
    Joshi, N., Matusik, W., Avidan, S.: Natural video matting using camera arrays. ACM SIGGRAPH 25(3), 779–786 (2006)CrossRefGoogle Scholar
  6. 6.
    Airouche, M., Bentabet, L., Zelmat, M., Gao, G.: Pedestrian tracking using color, thermal and location cue measurements: a DSmT-based framework. Machine Vision and Applications (2011) (online first), doi:10.1007/s00138-011-0342-zGoogle Scholar
  7. 7.
    Yilmaz, A., Shafique, K., Shah, M.: Target tracking in airborne forward looking infrared imagery. Image and Vision Computing 21(7), 623–635 (2003)CrossRefGoogle Scholar
  8. 8.
    Fernández-Caballero, A., Carlos-Castillo, J., Serrano-Cuerda, J., Maldonado-Bascón, S.: Real-time human segmentation in infrared videos. Expert Systems with Applications 38, 2577–2584 (2011)CrossRefGoogle Scholar
  9. 9.
    Chuang, Y.-Y., Curless, B., Salesin, D.-H., Szeliski, R.: A bayesian approach to digital matting. IEEE CVPR 2, 264–271 (2001)Google Scholar
  10. 10.
    Wang, J., Cohen, M.: Optimized color sampling for robust matting. IEEE CVPR, 1–8 (2007)Google Scholar
  11. 11.
    Levin, A., Lischinski, D., Weiss, Y.: A closed form solution to natural image matting. IEEE TPAMI 30, 228–242 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Layachi Bentabet
    • 1
  • Hui Zhang
    • 1
  1. 1.Computer Science DepartmentBishop‘s UniversitySherbrookeCanada

Personalised recommendations