Skip to main content

Novel Setups

  • Chapter
  • First Online:
Plasmons as Sensors

Part of the book series: Springer Theses ((Springer Theses))

  • 874 Accesses

Abstract

Several techniques have been used to extract optical spectra of single plasmonic nanoparticles (Kalkbrenner et al. 2004; Van Dijk et al. 2005; Arbouet et al. 2004), most efficiently using dark-field microscopy. This setup investigates the spectrum of an individual nanoparticle by dispersing the scattered light with a spectrometer and capturing it with a connected charge-coupled device (CCD) camera. In setups used until now, one single particle is imaged onto a small pinhole in front of a spectrometer. Therefore it is only possible to investigate one single particle at the same time. The investigation of many particles was realized by manual moving each particle separately into the focus, which results in a very time consuming measurement. In this chapter I describe the development of a novel setup (fastSPS setup, Sect. 5.1), which measures the spectrum of all particles in the field of view automatically. Furthermore many particles are investigated at the same time, which results in an enormous decrease of the time needed for the measurement and the ability to monitor the spectra of many particles continuously in parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arbouet, A., Christofilos, D., Del Fatti, N., Vallee, F., Huntzinger, J. R., Arnaud, L., et al. (2004). Direct measurement of the single-metal-cluster optical absorption. Physical Review Letters, 93(12), 127401.

    Google Scholar 

  • Bartko, A. P.,& Dickson, R. M. (1999). Imaging three-dimensional single molecule orientations. Journal of Physical Chemistry B, 103(51), 11237–11241.

    Google Scholar 

  • Becker, J., Schubert, O.,& Sönnichsen, C. (2007). Gold nanoparticle growth monitored in situ using a novel fast optical single-particle spectroscopy method. Nano Letters, 7(6), 1664–1669.

    Google Scholar 

  • Chung, I. H., Shimizu, K. T.,& Bawendi, M. G. (2003). Room temperature measurements of the 3d orientation of single cdse quantum dots using polarization microscopy. Proceedings of the National Academy of Sciences of the United States of America, 100(2), 405–408.

    Google Scholar 

  • Gemperlein, R. (1988). Fourier interferometric stimulation (fis) in biology and medicne. Microchimica Acta, 94, 353–356.

    Google Scholar 

  • Ha, T., Laurence, T. A., Chemla, D. S.,& Weiss, S. (1999). Polarization spectroscopy of single fluorescent molecules. Journal of Physical Chemistry B, 103(33), 6839–6850.

    Google Scholar 

  • Hanley, Q. S., Verveer, P. J.,& Jovin, T. M. (1998). Optical sectioning fluorescence spectroscopy in a programmable array microscope. Applied Spectroscopy, 52(6), 783–789.

    Google Scholar 

  • Herrala, E.,& Okkonen, J. (1996). Imaging spectrograph and camera solutions for industrial applications. International Journal of Pattern Recognition and Artificial Intelligence, 10(1), 43–54.

    Google Scholar 

  • Jiang, S. H.,& Walker, J. G. (2005). Non-scanning fluorescence confocal microscopy using speckle illumination and optical data processing. Optics Communications, 256(1–3), 35–45.

    Google Scholar 

  • Kalkbrenner, T., Hakanson, U.,& Sandoghdar, V. (2004). Tomographic plasmon spectroscopy of a single gold nanoparticle. Nano Letters, 4(12), 2309–2314.

    Google Scholar 

  • Kim, M. S., Chen, Y. R.,& Mehl, P. M. (2001). Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Transactions of the Asae, 44(3), 721–729.

    Google Scholar 

  • Lieb, M. A., Zavislan, J. M.,& Novotny, L. (2004). Single-molecule orientations determined by direct emission pattern imaging. Journal of the Optical Society of America B-Optical Physics, 21(6), 1210–1215.

    Google Scholar 

  • Liu, G. L., Doll, J. C.,& Lee, L. P. (2005). High-speed multispectral imaging of nanoplasmonic array. Optics Express, 13(21), 8520–8525.

    Google Scholar 

  • Liu, G. L., Yin, Y. D., Kunchakarra, S., Mukherjee, B., Gerion, D., Jett, S. D., et al. (2006). A nanoplasmonic molecular ruler for measuring nuclease activity and dna footprinting. Nature Nanotechnology, 1(1), 47–52.

    Google Scholar 

  • Müller, J., Sönnichsen, C., von Poschinger, H., von Plessen, G., Klar, T. A.,& Feldmann, J. (2002). Electrically controlled light scattering with single metal nanoparticles. Applied Physics Letters, 81(1), 171–173.

    Google Scholar 

  • Muskens, O. L., Del Fatti, N., Vallee, F., Huntzinger, J. R., Billaud, P.,& Broyer, M. (2006). Single metal nanoparticle absorption spectroscopy and optical characterization. Applied Physics Letters, 88(6), 063109.

    Google Scholar 

  • Nelayah, J., Kociak, M., Stephan, O., de Abajo, F. J. G., Tence, M., Henrard, L., et al. (2007). Mapping surface plasmons on a single metallic nanoparticle. Nature Physics, 3(5), 348–353.

    Google Scholar 

  • Raschke, G., Kowarik, S., Franzl, T., Sönnichsen, C., Klar, T. A., Feldmann, J., et al. (2003). Biomolecular recognition based on single gold nanoparticle light scattering. Nano Letters, 3(7), 935–938.

    Google Scholar 

  • Reinhard, B. M., Siu, M., Agarwal, H., Alivisatos, A. P.,& Liphardt, J. (2005). Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles. Nano Letters, 5(11), 2246–2252.

    Google Scholar 

  • Schubert, O., Becker, J., Carbone, L., Khalavka, Y., Provalska, T., Zins, I., et al. (2008). Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry. Nano Letters, 8(8), 2345–2350.

    Google Scholar 

  • Sönnichsen, C. (2001). Plasmons in metal nanostructures. München: Cuvillier Verlag Göttingen.

    Google Scholar 

  • Sönnichsen, C.,& Alivisatos, A. P. (2005). Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano Letters, 5(2), 301–304.

    Google Scholar 

  • Sönnichsen, C., Franzl, T., Wilk, T., von Plessen, G., Feldmann, J., Wilson, O., et al. (2002). Drastic reduction of plasmon damping in gold nanorods. Physical Review Letters, 88(7), 077402.

    Google Scholar 

  • Sönnichsen, C., Reinhard, B. M., Liphardt, J.,& Alivisatos, A. P. (2005). A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnology, 23(6), 741–745.

    Google Scholar 

  • Toprak, E., Enderlein, J., Syed, S., McKinney, S. A., Petschek, R. G., Ha, T., et al. (2006). Defocused orientation and position imaging (dopi) of myosin v. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6495–6499.

    Google Scholar 

  • Van Dijk, M. A., Lippitz, M.,& Orrit, M. (2005). Far-field optical microscopy of single metal manoparticies. Accounts of Chemical Research, 38(7), 594–601.

    Google Scholar 

  • Weiss, S. (2000). Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nature Structural Biology, 7(9), 724–729.

    Google Scholar 

  • Yguerabide, J.,& Yguerabide, E. E. (1998). Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications - i. theory. Analytical Biochemistry, 262(2), 137–156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Becker .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Becker, J. (2012). Novel Setups. In: Plasmons as Sensors. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31241-0_5

Download citation

Publish with us

Policies and ethics