Skip to main content

Evaluating Trajectory Queries over Imprecise Location Data

  • Conference paper
Book cover Scientific and Statistical Database Management (SSDBM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7338))

Abstract

Trajectory queries, which retrieve nearby objects for every point of a given route, can be used to identify alerts of potential threats along a vessel route, or monitor the adjacent rescuers to a travel path. However, the locations of these objects (e.g., threats, succours) may not be precisely obtained due to hardware limitations of measuring devices, as well as the constantly-changing nature of the external environment. Ignoring data uncertainty can render low query quality, and cause undesirable consequences such as missing alerts of threats and poor response time in rescue operations. Also, the query is quite time-consuming, since all the points on the trajectory are considered. In this paper, we study how to efficiently evaluate trajectory queries over imprecise location data, by proposing a new concept called the u-bisector. In general, the u-bisector is an extension of bisector to handle imprecise data. Based on the u-bisector, we design several novel filters to make our solution scalable to a long trajectory and a large database size. An extensive experimental study on real datasets suggests that our proposal produces better results than traditional solutions that do not consider data imprecision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB (2002)

    Google Scholar 

  2. U. S. C. Guard, Announcement of 2011 international ice patrol services (2011), http://www.uscg.mil/lantarea/iip/docs/AOS_2011.pdf

  3. Jesse, L., Janet, R., Edward, G., Lee, V.: Effects of habitat on gps collar performance: using data screening to reduce location error. Journal of Applied Ecology (2007)

    Google Scholar 

  4. Park, K., Choo, H., Valduriez, P.: A scalable energy-efficient continuous nearest neighbor search in wireless broadcast systems. In: Wireless Networks (2010)

    Google Scholar 

  5. Cheng, R., Xie, X., Yiu, M.L., Chen, J., Sun, L.: Uv-diagram: A voronoi diagram for uncertain data. In: ICDE (2010)

    Google Scholar 

  6. Lian, X., Chen, L.: Efficient processing of probabilistic reverse nearest neighbor queries over uncertain data. VLDBJ (2009)

    Google Scholar 

  7. Cheema, M.A., Lin, X., Wang, W., Zhang, W., Pei, J.: Probabilistic reverse nearest neighbor queries on uncertain data. TKDE (2010)

    Google Scholar 

  8. Chen, J., Cheng, R., Mokbel, M., Chow, C.: Scalable processing of snapshot and continuous nearest-neighbor queries over one-dimensional uncertain data. VLDBJ (2009)

    Google Scholar 

  9. Trajcevski, G., Tamassia, R., Ding, H., Scheuermann, P., Cruz, I.F.: Continuous probabilistic nearest-neighbor queries for uncertain trajectories. In: EDBT, pp. 874–885 (2009)

    Google Scholar 

  10. Zheng, K., Fung, G.P.C., Zhou, X.: K-nearest neighbor search for fuzzy objects. In: SIGMOD (2010)

    Google Scholar 

  11. Song, Z., Roussopoulos, N.: K-Nearest Neighbor Search for Moving Query Point. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 79–96. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Zheng, B., Lee, D.-L.: Semantic Caching in Location-Dependent Query Processing. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 97–113. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial queries. In: SIGMOD (2003)

    Google Scholar 

  14. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying imprecise data in moving object environments. TKDE 16(9) (2004)

    Google Scholar 

  15. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

    Google Scholar 

  16. Hadjieleftheriou, M.: Spatial index library version 0.44.2b, http://u-foria.org/marioh/spatialindex/index.html

  17. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to data mining (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xie, X., Cheng, R., Yiu, M.L. (2012). Evaluating Trajectory Queries over Imprecise Location Data. In: Ailamaki, A., Bowers, S. (eds) Scientific and Statistical Database Management. SSDBM 2012. Lecture Notes in Computer Science, vol 7338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31235-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31235-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31234-2

  • Online ISBN: 978-3-642-31235-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics