Skip to main content

Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections

  • Conference paper
Scientific and Statistical Database Management (SSDBM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7338))

Abstract

Dense subgraph discovery is a key issue in graph mining, due to its importance in several applications, such as correlation analysis, community discovery in the Web, gene co-expression and protein-protein interactions in bioinformatics. In this work, we study the discovery of the top-k dense subgraphs in a set of graphs. After the investigation of the problem in its static case, we extend the methodology to work with dynamic graph collections, where the graph collection changes over time. Our methodology is based on lower and upper bounds of the density, resulting in a reduction of the number of exact density computations. Our algorithms do not rely on user-defined threshold values and the only input required is the number of dense subgraphs in the result (k). In addition to the exact algorithms, an approximation algorithm is provided for top-k dense subgraph discovery, which trades result accuracy for speed. We show that a significant number of exact density computations is avoided, resulting in efficient monitoring of the top-k dense subgraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, C., Wang, H.: Managing and mining graph data. Springer (2010)

    Google Scholar 

  2. Aggarwal, C., Li, Y., Yu, P.S., Jin, R.: On dense pattern mining in graph streams. In: Proceedings of the 36th VLDB Conference, pp. 975–984 (2010)

    Google Scholar 

  3. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of networks. CoRR, cs.DS/0310049 (2003)

    Google Scholar 

  4. Chen, L., Wang, C.: Continuous subgraph pattern search over certain and uncertain graph streams. IEEE Transactions on Knowledge and Data Engineering 22(8), 1093–1109 (2010)

    Article  Google Scholar 

  5. Cook, D.J., Holder, L.B. (eds.): Mining graph data. Wiley (2007)

    Google Scholar 

  6. Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive graphs. In: Proceedings of the 31st VLDB Conference, pp. 721–732 (2005)

    Google Scholar 

  7. Goldberg, A.V.: Finding a maximum density subgraph. Technical Report CSD-84-171, University of Berkeley (1984)

    Google Scholar 

  8. Hu, H., Yan, X., Huang, Y., Han, J., Zhou, X.J.: Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 21(1), i213–i221 (2005)

    Article  Google Scholar 

  9. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. Journal of Algorithms 17(2), 222–236 (1994)

    Article  MathSciNet  Google Scholar 

  10. Luczak, T.: Size and connectivity of the k-core of a random graph. Discrete Mathematics 91(1), 61–68 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring of top-k queries over sliding windows. In: Proceedings of the ACM SIGMOD Conference, pp. 635–646 (2006)

    Google Scholar 

  12. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems. ACM Transactions on Database Systems 30(1), 41–82 (2005)

    Article  Google Scholar 

  13. Saha, B., Hoch, A., Khuller, S., Raschid, L., Zhang, X.-N.: Dense Subgraphs with Restrictions and Applications to Gene Annotation Graphs. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 456–472. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Seidman, S.B.: Network structure and minimum degree. Social Networks 5, 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  15. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: GraphScope: parameter-free mining of large time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 687–696 (2007)

    Google Scholar 

  16. Tao, Y., Papadias, D.: Maintaining sliding window skylines on data streams. IEEE Transactions on Knowledge and Data Engineering 18(3), 377–391 (2006)

    Article  Google Scholar 

  17. Viger, F., Latapy, M.: Efficient and Simple Generation of Random Simple Connected Graphs with Prescribed Degree Sequence. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 440–449. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Valari, E., Kontaki, M., Papadopoulos, A.N. (2012). Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections. In: Ailamaki, A., Bowers, S. (eds) Scientific and Statistical Database Management. SSDBM 2012. Lecture Notes in Computer Science, vol 7338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31235-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31235-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31234-2

  • Online ISBN: 978-3-642-31235-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics