Skip to main content

Nonlinear Periodic Phononic Structures and Granular Crystals

  • Chapter
  • First Online:
Acoustic Metamaterials and Phononic Crystals

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 173))

Abstract

This chapter describes the dynamic behavior of nonlinear periodic phononic structures, along with how such structures can be utilized to affect the propagation of mechanical waves. Granular crystals are one type of nonlinear periodic phononic structure and are the focus of this chapter. The chapter begins with a brief history of nonlinear lattices and an introduction to granular crystals. This is followed by a summary of past and recent work on one-dimensional (1D) and two-dimensional (2D) granular crystals, which is categorized according to the crystals’ periodicity and dynamical regime. The chapter is concluded with a commentary by the authors, which discusses several possible future directions relating to granular crystals and other nonlinear periodic phononic structures. Throughout this chapter, a richness of nonlinear dynamic effects that occur in granular crystals is revealed, including a plethora of phenomena with no linear analog such as solitary waves, discrete breathers, tunable frequency band gaps, bifurcations, and chaos. Furthermore, in addition to the description of fundamental nonlinear phenomena, the authors describe how such phenomena can enable novel engineering devices and be applied to other nonlinear periodic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Duang, J. Guojin, Introduction to Condensed Matter Physics, vol. 1 (World Scientific, Singapore, 2005)

    Book  Google Scholar 

  2. O. Morsch, M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices. Rev. Mod. Phys. 78(1), 179–215 (2006)

    Article  CAS  Google Scholar 

  3. P. Markos, C.M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, Princeton, NJ, 2008)

    Google Scholar 

  4. L. Brillouin, Wave Propagation in Periodic Structures (McGraw-Hill, New York, 1953)

    Google Scholar 

  5. Nonlinearities in Periodic Structures and Metamaterials, ed. by C. Denz, S. Flach, Y.S. Kivshar. Springer Series in Optical Sciences, vol. 150 (Springer, Berlin, 2010)

    Google Scholar 

  6. Y.C. Fung, P. Tong, Classical and Computational Solid Mechanics (World Scientific Publishing, Singapore, 2001)

    Google Scholar 

  7. H. Hertz, Journal fur Die Reine und Angewandie Mathematic 92, 156–171 (1881)

    Google Scholar 

  8. L. Lifshitz, M.C. Cross, Nonlinear Dynamics of Nanomechanical and Micromechanical Resonators, in Review of Nonlinear Dynamics and Complexity, ed. by H.G. Schuster (2008)

    Google Scholar 

  9. K. Bertoldi, M.C. Boyce, Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures. Phys. Rev. B 77(5), 052105 (2008)

    Google Scholar 

  10. F.M. Hamilton, D.T. Blackstock, Nonlinear Acoustics: Theory and Applications (Academic, New York, 1997)

    Google Scholar 

  11. A.M. Samsonov, Strain Solitons and How to Construct Them (Chapman & Hall/CRC, Boca Raton, 2001)

    Book  Google Scholar 

  12. G.A. Maugin, Nonlinear Waves in Elastic Crystals (Oxford University Press, New York, NY, 1999)

    Google Scholar 

  13. P. Hess, Surface acoustic waves in materials science. Phys. Today 55(3), 42–47 (2002)

    Article  CAS  Google Scholar 

  14. V.F. Nesterenko, Dynamics of Heterogeneous Materials (Springer, New York, 2001)

    Google Scholar 

  15. M. Sato, B.E. Hubbard, A.J. Sievers, Colloquium: nonlinear energy localization and its manipulation in micromechanical oscillator arrays. Rev. Mod. Phys. 78(1), 137–157 (2006)

    Article  CAS  Google Scholar 

  16. B. Liang, B. Yuan, J.C. Cheng, Acoustic diode: rectification of acoustic energy flux in one-dimensional systems. Phys. Rev. Lett. 103(10), 104301 (2009)

    Article  Google Scholar 

  17. B. Liang et al., An acoustic rectifier. Nat. Mater. 9(12), 989–992 (2010)

    Article  CAS  Google Scholar 

  18. H.Y. Hao, H.J. Maris, Experiments with acoustic solitons in crystalline solids. Phys. Rev. B 64(6), 064302 (2001)

    Article  Google Scholar 

  19. H.J. Maris, S. Tamura, Propagation of acoustic phonon solitons in nonmetallic crystals. Phys. Rev. B 84(2), 024301 (2011)

    Article  Google Scholar 

  20. M. Terraneo, M. Peyrard, G. Casati, Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier. Phys. Rev. Lett. 88(9), 094302 (2002)

    Google Scholar 

  21. B. Li, L. Wang, G. Casati, Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93(18), 184301 (2004)

    Article  Google Scholar 

  22. C.W. Chang et al., Solid-state thermal rectifier. Science 314(5802), 1121–1124 (2006)

    Article  CAS  Google Scholar 

  23. B. Li, L. Wang, G. Casati, Negative differential thermal resistance and thermal transistor. Appl. Phys. Lett. 88(14) (2006)

    Google Scholar 

  24. L. Wang, B. Li, Thermal logic gates: computation with phonons. Phys. Rev. Lett. 99(17), 177208 (2007)

    Article  Google Scholar 

  25. L. Wang, B. Li, Thermal memory: a storage of phononic information. Phys. Rev. Lett. 101(26), 267203 (2008)

    Article  Google Scholar 

  26. N. Yang, G. Zhang, B. Li, Carbon nanocone: a promising thermal rectifier. Appl. Phys. Lett. 93(24), 243111 (2008)

    Google Scholar 

  27. N. Yang, G. Zhang, B. Li, Thermal rectification in asymmetric graphene ribbons. Appl. Phys. Lett. 95(3), 033107 (2009)

    Google Scholar 

  28. E. Fermi, J.R. Pasta, S. Ulam, Studies of Nonlinear Problems (Los Alamos, Los Alamos Scientific Laboratory, 1955)

    Book  Google Scholar 

  29. M. Porter et al., Fermi, Pasta, Ulam and the birth of experimental mathematics. Am. Sci. 97(6) (2009)

    Google Scholar 

  30. D.B. Duncan et al., Solitons on lattices. Physica D 68(1), 1–11 (1993)

    Article  Google Scholar 

  31. Y.V. Kartashov, B.A. Malomed, L. Torner, Solitons in nonlinear lattices. Rev. Mod. Phys. 83(1), 247 (2011)

    Article  Google Scholar 

  32. P.G. Kevrekidis, Non-linear waves in lattices: past, present, future. IMA J. Appl. Math. 76(3), 389–423 (2011)

    Article  Google Scholar 

  33. S. Flach, A.V. Gorbach, Discrete breathers – advances in theory and applications. Phys. Rep. 467(1–3), 1–116 (2008)

    Article  Google Scholar 

  34. J.S. Russel, Report on Waves. Report of the 14th Meeting of the British Association for the Advancement of Science (1844), p. 311.

    Google Scholar 

  35. T. Dauxois, M. Peyrard, Physics of solitons (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  36. S. Aubry, Discrete breathers: localization and transfer of energy in discrete hamiltonian nonlinear systems. Physica D 216(1), 1–30 (2006)

    Article  Google Scholar 

  37. D.K. Campbell, S. Flach, Y.S. Kivshar, Localizing energy through nonlinearity and discreteness. Phys. Today 57(1), 43–49 (2004)

    Article  CAS  Google Scholar 

  38. S. Wiggins, Introduction to Applied Nonlinear Systems and Chaos, 2nd edn. (Springer, New York, NY, 2000)

    Google Scholar 

  39. R. Vijay, M.H. Devoret, I. Siddiqi, Invited Review Article: The Josephson Bifurcation Amplifier. Rev. Sci. Instrum. 80(11) (2009)

    Google Scholar 

  40. S.H. Strogatz, Nonlinear Dynamics and Chaos (Perseus Publishing, Cambridge, MA, 1994)

    Google Scholar 

  41. M. Soljacic, J.D. Joannopoulos, Enhancement of nonlinear effects using photonic crystals. Nat. Mater. 3(4), 211–219 (2004)

    Article  CAS  Google Scholar 

  42. R.B. Karabalin et al., Signal amplification by sensitive control of bifurcation topology. Phys. Rev. Lett. 106(9), 094102 (2011)

    Google Scholar 

  43. A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, New York, 1979)

    Google Scholar 

  44. V.F. Nesterenko, Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. [Zhurnal Prikladnoi Mekhaniki i Tehknicheskoi Fiziki], 1983. 24(5 [vol.24, no.5]), pp. 733–743 [136–148]

    Google Scholar 

  45. A.N. Lazaridi, V.F. Nesterenko, Observation of a new type of solitary waves in one-dimensional granular medium. J. Appl. Mech. Tech. Phys. 26(3), 405–408 (1985)

    Article  Google Scholar 

  46. C. Coste, E. Falcon, S. Fauve, Solitary waves in a chain of beads under hertz contact. Phys. Rev. E 56(5), 6104–6117 (1997)

    Article  CAS  Google Scholar 

  47. C. Coste, B. Gilles, On the validity of Hertz contact law for granular material acoustics. Eur. Phys. J. B 7(1), 155–168 (1999)

    Article  CAS  Google Scholar 

  48. C. Daraio et al., Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. Phys. Rev. E 73(2), 026610 (2006)

    Google Scholar 

  49. N. Boechler, C. Daraio, An Experimental Investigation of Acoustic Band Gaps and Localization in Granular Elastic Chains, in Proceedings of the Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2010, pp. 271–276

    Google Scholar 

  50. N. Boechler et al., Tunable vibrational band gaps in one-dimensional diatomic granular crystals with three-particle unit cells. J. Appl. Phys. 109(7), 074906 (2011)

    Google Scholar 

  51. N. Boechler et al., Discrete breathers in one-dimensional diatomic granular crystals. Phys. Rev. Lett. 104(24), 244302 (2010)

    Google Scholar 

  52. G. Theocharis et al., Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals. Phys. Rev. E 82(5), 056604 (2010)

    Google Scholar 

  53. K.R. Jayaprakash, Y. Starosvetsky, A.F. Vakakis, M. Peeters, G. Kerschen, Nonlinear normal modes and band gaps in granular chains with no pre-compression. Nonlinear Dynam. (2010). Available online: 10.1007/s11071-010-9809-0

    Google Scholar 

  54. V.F. Nesterenko et al., Anomalous wave reflection at the interface of two strongly nonlinear granular media. Phys. Rev. Lett. 95(15), 158703 (2005)

    Google Scholar 

  55. C. Daraio et al., Energy trapping and shock disintegration in a composite granular medium. Phys. Rev. Lett. 96(5), 058002 (2006).

    Google Scholar 

  56. E.B. Herbold et al., Tunable frequency band-gap and pulse propagation in a strongly nonlinear diatomic chain. Acta Mech. 205, 85–103 (2009)

    Google Scholar 

  57. F. Fraternali, M.A. Porter, C. Daraio, Optimal design of composite granular protectors. Mech. Adv. Mater. Struct. 17, 1–19 (2010)

    Article  Google Scholar 

  58. D. Khatri, P. Rizzo, C. Daraio. Highly Nonlinear Waves’ Sensor Technology for Highway Infrastructures. in SPIE Smart Structures/NDE, 15th annual international symposium. San Diego, CA, 2008

    Google Scholar 

  59. A. Spadoni, C. Daraio, Generation and control of sound bullets with a nonlinear acoustic lens. Proc. Natl. Acad. Sci. 107, 7230 (2010)

    Article  CAS  Google Scholar 

  60. N. Boechler, G. Theocharis, C. Daraio, Bifurcation-based acoustic switching and rectification. Nat. Mater. 10(9), 665–8 (2011)

    Article  CAS  Google Scholar 

  61. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  62. D. Sun, C. Daraio, S. Sen, The nonlinear repulsive force between two solids with axial symmetry. Phys. Rev. E 83, 066605 (2011)

    Google Scholar 

  63. D. Ngo, D. Khatri, C. Daraio, Solitary waves in uniform chains of ellipsoidal particles. Phys. Rev. E 84, 026610 (2011)

    Google Scholar 

  64. D. Khatri, D. Ngo, C. Daraio, Solitary waves in uniform chains of cylindrical particles. Granul. Matter (2011), in press

    Google Scholar 

  65. D. Ngo et al., Highly nonlinear solitary waves in chains of hollow spherical particles Granul. Matter (2012), in press

    Google Scholar 

  66. M. de Billy, Experimental study of sound propagation in a chain of spherical beads. J. Acoust. Soc. Am. 108(4), 1486–1495 (2000)

    Article  Google Scholar 

  67. A. Pankov, Traveling Waves and Periodic Oscillations in Fermi-Pasta-Ulam Lattices (Imperial College Press, London, 2005)

    Book  Google Scholar 

  68. S. Flach, A. Gorbach, Discrete breathers in Fermi-Pasta-Ulam lattices. Chaos 15(1), 015112 (2005)

    Google Scholar 

  69. Remoissenet, M., Waves Called Solitons (Concepts and Experiments). 3rd revised and enlarged edition ed (Springer, Berlin, 1999)

    Google Scholar 

  70. G.X. Huang, Z.P. Shi, Z.X. Xu, Asymmetric intrinsic localized modes in a homogeneous lattice with cubic and quartic anharmonicity. Phys. Rev. B 47(21), 14561–14564 (1993)

    Article  Google Scholar 

  71. V.J. Sanchez-Morcillo et al., Second Harmonics, Instabilities and Hole Solitons in 1D Phononic Granular Chains. in Phononics 2011: First International conference on phononic crystals, metamaterials and optomechanics, Santa Fe, New Mexico,USA, 2011

    Google Scholar 

  72. V. Tournat, V.E. Gusev, B. Castagnede, Self-demodulation of elastic waves in a one-dimensional granular chain. Phys. Rev. E 70(5), 056603 (2004)

    Google Scholar 

  73. P. Rosenau, J.M. Hyman, Compactons – solitons with finite wavelength. Phys. Rev. Lett. 70(5), 564–567 (1993)

    Article  Google Scholar 

  74. R.S. MacKay, Solitary waves in a chain of beads under Hertz contact. Phys. Lett. A 251(3), 191–192 (1999)

    Article  CAS  Google Scholar 

  75. G. Friesecke, J.A.D. Wattis, Existence theorem for solitary waves on lattices. Commun. Math. Phys. 161(2), 391–418 (1994)

    Article  Google Scholar 

  76. J.Y. Ji, J.B. Hong, Existence criterion of solitary waves in a chain of grains. Phys. Lett. A 260(1–2), 60–61 (1999)

    Article  CAS  Google Scholar 

  77. S. Sen et al., Solitary waves in the granular chain. Phys. Rep. 462(2), 21–66 (2008)

    Article  Google Scholar 

  78. A. Chatterjee, Asymptotic solution for solitary waves in a chain of elastic spheres. Phys. Rev. E 59(5), 5912–5919 (1999)

    Article  CAS  Google Scholar 

  79. A. Rosas, K. Lindenberg, Pulse propagation in chains with nonlinear interactions. Phys. Rev. E 69(1), 016615 (2004)

    Google Scholar 

  80. A. Rosas, K. Lindenberg, Pulse velocity in a granular chain. Phys. Rev. E 69(3), 037601 (2004)

    Google Scholar 

  81. J.M. English, R.L. Pego, On the solitary wave pulse in a chain of beads. Proc. Am. Math. Soc. 133(6), 1763–1768 (2005)

    Article  Google Scholar 

  82. K. Ahnert, A. Pikovsky, Compactons and chaos in strongly nonlinear lattices. Phys. Rev. E 79(2), 026209 (2009)

    Google Scholar 

  83. Y. Starosvetsky, A.F. Vakakis, Traveling waves and localized modes in one-dimensional homogeneous granular chains with no precompression. Phys. Rev. E 82(2), 026603 (2010)

    Google Scholar 

  84. Y. Zhu, A. Shukla, M.H. Sadd, The effect of microstructural fabric on dynamic load transfer in two dimensional assemblies of elliptical particles. J. Mech. Phys. Solids 44(8), 1283–1303 (1996)

    Article  CAS  Google Scholar 

  85. C. Daraio, V.F. Nesterenko, Strongly nonlinear wave dynamics in a chain of polymer coated beads. Phys. Rev. E 73(2), 026612 (2006)

    Google Scholar 

  86. C. Daraio et al., Strongly nonlinear waves in a chain of teflon beads. Phys. Rev. E 72(1), 016603 (2005)

    Google Scholar 

  87. S. Job et al., How Hertzian solitary waves interact with boundaries in a 1D granular medium. Phys. Rev. Lett. 94(17), 178002 (2005)

    Google Scholar 

  88. S. Job et al., Solitary wave trains in granular chains: experiments, theory and simulations. Granul. Matter 10, 13–20 (2007)

    Article  Google Scholar 

  89. F. Santibanez et al., Experimental evidence of solitary wave interaction in Hertzian chains. Phys. Rev. E 84(2), 026604 (2011)

    Google Scholar 

  90. D. Ngo, C. Daraio, Nonlinear dynamics of chains of coated particles (2011), in preparation

    Google Scholar 

  91. A.C. Hladky-Hennion, M. de Billy, Experimental validation of band gaps and localization in a one-dimensional diatomic phononic crystal. J. Acoust. Soc. Am. 122, 2594–2600 (2007)

    Article  Google Scholar 

  92. A.C. Hladky-Hennion, G. Allan, M. de Billy, Localized modes in a one-dimensional diatomic chain of coupled spheres. J. Appl. Phys. 98(5), 054909 (2005)

    Google Scholar 

  93. R.F. Wallis, Effect of free ends on the vibration frequencies of one-dimensional lattices. Phys. Rev. 105(2), 540–545 (1957)

    Article  CAS  Google Scholar 

  94. R. Livi, M. Spicci, R.S. MacKay, Breathers on a diatomic FPU chain. Nonlinearity 10(6), 1421–1434 (1997)

    Article  Google Scholar 

  95. P. Maniadis, A.V. Zolotaryuk, G.P. Tsironis, Existence and stability of discrete gap breathers in a diatomic beta Fermi-Pasta-Ulam chain. Phys. Rev. E 67(4), 046612 (2003)

    Google Scholar 

  96. G.X. Huang, B.B. Hu, Asymmetric gap soliton modes in diatomic lattices with cubic and quartic nonlinearity. Phys. Rev. B 57(10), 5746–5757 (1998)

    Article  CAS  Google Scholar 

  97. M. Aoki, S. Takeno, A.J. Sievers, Stationary anharmonic gap modes in a one-dimensional diatomic lattice with quartic anharmonicity. J. Physical Soc. Japan 62(12), 4295–4310 (1993)

    Article  CAS  Google Scholar 

  98. G. Theocharis, N. Boechler, C. Daraio, Control of Vibrational Energy in Nonlinear Granular Crystals, in Proceedings of Phononics, Santa Fe, New Mexico, USA, 2011, pp. 170–171

    Google Scholar 

  99. M.A. Porter et al., Highly nonlinear solitary waves in heterogeneous periodic granular media. Physica D 238, 666–676 (2009)

    Article  CAS  Google Scholar 

  100. K.R. Jayaprakash, Y. Starosvetsky, A.F. Vakakis, New family of solitary waves in granular dimer chains with no precompression. Phys. Rev. E 83(3 Pt 2), 036606 (2011)

    Article  CAS  Google Scholar 

  101. Y. Man et al., Defect modes in one-dimensional granular crystals. Phys. Rev. E 85, 037601 (2012)

    Google Scholar 

  102. G. Theocharis et al., Localized breathing modes in granular crystals with defects. Phys. Rev. E 80, 066601 (2009)

    Article  CAS  Google Scholar 

  103. S. Job et al., Wave localization in strongly nonlinear Hertzian chains with mass defect. Phys. Rev. E 80, 025602(R) (2009)

    Article  Google Scholar 

  104. P.C. Kevrekidis et al., Spontaneous symmetry breaking in photonic lattices: theory and experiment. Phys. Lett. A 340(1–4), 275–280 (2005)

    Article  CAS  Google Scholar 

  105. M. Albiez et al., Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction. Phys. Rev. Lett. 95(1), 010402 (2005)

    Google Scholar 

  106. G. Theocharis et al., Symmetry breaking in symmetric and asymmetric double-well potentials. Phys. Rev. E 74(5), 056608 (2006)

    Google Scholar 

  107. S. Sen et al., Solitonlike pulses in perturbed and driven Hertzian chains and their possible applications in detecting buried impurities. Phys. Rev. E 57(2), 2386–2397 (1998)

    Google Scholar 

  108. M. Manciu et al., Phys. A 274, 607–618 (1999)

    Google Scholar 

  109. S. Sen et al., Int. J. Mod. Phys. B 19(18), 2951–2973 (2005). Review, and references therein

    Google Scholar 

  110. E. Hascoet, H.J. Herrmann, Shocks in non-loaded bead chains with impurities. Eur. Phys. J. B 14(1), 183–190 (2000)

    Article  CAS  Google Scholar 

  111. Y. Starosvetsky, K.R. Jayaprakash, A.F. Vakakis, Scattering of solitary waves and excitation of transient breathers in granular media by light intruders. J. Appl. Mech. (2011), accepted for publication

    Google Scholar 

  112. M. Manciu, S. Sen, A.J. Hurd, Impulse propagation in dissipative and disordered chains with power-law repulsive potentials. Physica D 157(3), 226–240 (2001)

    Article  Google Scholar 

  113. A. Rosas, K. Lindenberg, Pulse dynamics in a chain of granules with friction. Phys. Rev. E 68(4 Pt 1), 041304 (2003)

    Article  Google Scholar 

  114. N.V. Brilliantov et al., Model for collisions in granular gases. Phys. Rev. E 53(5), 5382–5392 (1996)

    Article  CAS  Google Scholar 

  115. E.B. Herbold, V.F. Nesterenko, Shock wave structure in a strongly nonlinear lattice with viscous dissipation. Phys. Rev. E 75(2), 021304 (2007)

    Google Scholar 

  116. A. Rosas et al., Observation of two-wave structure in strongly nonlinear dissipative granular chains. Phys. Rev. Lett. 98(16), 164301 (2007)

    Google Scholar 

  117. R. Carretero-Gonzalez et al., Dissipative solitary waves in periodic granular media. Phys. Rev. Lett. 102, 024102 (2009)

    Article  CAS  Google Scholar 

  118. I.S. Pavlov, A.I. Potapov, G.A. Maugin, A 2D granular medium with rotating particles. Int. J. Solids Struct. 43(20), 6194–6207 (2006)

    Article  Google Scholar 

  119. V. Tournat et al., Elastic waves in phononic monolayer granular membranes. New J. Phys. 13, 073042 (2011)

    Google Scholar 

  120. M.H. Sadd, J. Gao, A. Shukla, Numerical analysis of wave propagation through assemblies of elliptical particles. Comput. Geotech. 20(3–4), 323–343 (1997)

    Article  Google Scholar 

  121. A. Leonard, F. Fraternali, C. Daraio, Directional wave propagation in a highly nonlinear square packing of spheres. Exp. Mech. (2011), DOI: 10.1007/s11340-011-9544-6

    Google Scholar 

  122. J.D. Goddard, Nonlinear elasticity and pressure-dependent wave speed in granular media. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 430(1878), 105–131 (1990)

    Article  Google Scholar 

  123. S. Sen, R.S. Sinkovits, Sound propagation in impure granular columns. Phys. Rev. E 54(6), 6857–6865 (1996)

    Article  CAS  Google Scholar 

  124. B. Velicky, C. Caroli, Pressure dependence of the sound velocity in a two-dimensional lattice of Hertz-Mindlin balls: mean-field description. Phys. Rev. E 65(2), 021307 (2002)

    Google Scholar 

  125. B. Gilles, C. Coste, Low-frequency behavior of beads constrained on a lattice. Phys. Rev. Lett. 90(17), 174302 (2003)

    Google Scholar 

  126. M. Nishida, K. Tanaka, T. Ishida, DEM simulation of wave propagation in two-dimensional ordered array of particles. Shock Waves, vol. 2, Proceedings, ed. by K.S.F. Hannemann. (2009), pp. 815–820

    Google Scholar 

  127. A. Merkel, V. Tournat, V. Gusev, Elastic waves in noncohesive frictionless granular crystals. Ultrasonics 50(2), 133–138 (2010)

    Article  CAS  Google Scholar 

  128. M. Nishida, Y. Tanaka, DEM simulations and experiments for projectile impacting two-dimensional particle packings including dissimilar material layers. Granul. Matter 12(4), 357–368 (2010)

    Article  CAS  Google Scholar 

  129. A. Leonard, C. Daraio, A. Awasthi et al., Effects of weak disorder on stress wave anisotropy in centered square nonlinear granular crystals. Phys. Rev. E 86(3), 031305 (2012)

    Google Scholar 

  130. A. Leonard, C. Daraio, Varying stress wave anisotropy in centered square highly nonlinear granular crystals. Phys. Rev. Lett. 108, 214301 (2012)

    Google Scholar 

  131. A. Shukla, C.Y. Zhu, M. Sadd, Angular-dependence of dynamic load-transfer due to explosive loading in granular aggregate chains. J. Strain Anal. Eng. Des. 23(3), 121–127 (1988)

    Article  Google Scholar 

  132. C. Daraio et al., Highly nonlinear pulse splitting and recombination in a two-dimensional granular network. Phys. Rev. E 82(3), 036604 (2010)

    Google Scholar 

  133. D. Ngo, F. Fraternali, C. Daraio, Highly nonlinear solitary wave propagation in y-shaped granular crystals with variable branch angles. Phys. Rev. E 85, 036602 (2012)

    Google Scholar 

  134. J. Yang, S. Dunatunga, C. Daraio, Amplitude-dependent attenuation of compressive waves in curved granular crystals constrained by elastic guides. Acta Mech. 223, 549–562 (2012)

    Google Scholar 

  135. M. Eichenfield et al., Optomechanical crystals. Nature 462(7269), 78–82 (2009)

    Article  CAS  Google Scholar 

  136. S. Sadat-Saleh et al., Tailoring simultaneous photonic and phononic band gaps. J. Appl. Phys. 106(7), 074912 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Theocharis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Theocharis, G., Boechler, N., Daraio, C. (2013). Nonlinear Periodic Phononic Structures and Granular Crystals. In: Deymier, P. (eds) Acoustic Metamaterials and Phononic Crystals. Springer Series in Solid-State Sciences, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31232-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31232-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31231-1

  • Online ISBN: 978-3-642-31232-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics