Skip to main content

Static Linearity

  • Chapter
  • First Online:
High-Performance D/A-Converters

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 36))

  • 1786 Accesses

Abstract

The static linearity of a D/A-converter is determined by the mismatch of the DAC-elements. “Matching” denotes the achievable degree of similarity of nominally identical devices and is ultimately limited by random fluctuations of process parameters during the fabrication of the integrated circuit. The resulting “random mismatch” solely depends on the specific process technology and is found to be inversely proportional to the device dimensions. In general, the statistical properties of the electrical parameters of closely spaced integrated circuit elements subject to random mismatch can be described by a normal distribution [39].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Usually the matching constants are specified for transistor pairs. The single-device deviation from a (hypothetical) ideal device is then given by dividing the “pairwise” matching constants by \(\sqrt{2}\).

  2. 2.

    This is equivalent to having \({2}^{{M}_{L}} - 1\) independent versions of the lower segments, such that no element thereof is used twice in any major-carry transition.

  3. 3.

    Only a code-by-code calibration of the overall converter characteristic is able to correct also the static error introduced by the finite output impedance of the current cells. This can, e.g., be achieved with the method described in Sect. 3.3.4.

  4. 4.

    An exception are perhaps \(\Sigma \Delta \)-DACs with low physical resolution. With a small number of DAC unit cells the converter can indeed be designed for an accuracy approaching 14 bits, while still maintaining a reasonable silicon area. Of course, perfect layout is mandatory to even approach such a high degree of intrinsic matching.

  5. 5.

    In an N-element unary array the number of possible combinations that represent a digital input code k is given by the binomial factor \({r}_{k} = \left ({ N \atop k} \right ) = \frac{\left (N\right )!} {k!\left (N-k\right )!}\textrm{ , with }k \in [0; N - 1]\).

  6. 6.

    After 1 ∕ f rep s, the index pointer reaches again its starting point. Therefore, f rep is the fundamental frequency of the CLA-cycle.

  7. 7.

    Each output branch of the current folder must carry the full-scale current plus some extra current to prevent the cascode transistors from turning off near full scale.

  8. 8.

    Hence the name dynamic current copying.

References

  1. Burr-Brown, PCM1702: BiCMOS advanced sign magnitude 20-bit DIGITAL-TO-ANALOG CONVERTER. Datasheet (1993), www.ti.com

  2. T. Guy, L. Trythall, A. Brodersen, A sixteen-bit monolithic bipolar DAC. IEEE J. Solid-State Circ. 17(6), 1127–1132 (1982)

    Article  Google Scholar 

  3. J.R. Naylor, A complete high-speed voltage output 16-bit monolithic DAC. IEEE J. Solid-State Circ. 18(6), 729–735 (1982)

    Article  Google Scholar 

  4. R.v.d. Plassche, Integrated Analog-to-Digital and Digital-to-Analog Converters (Kluwer Academic Publishers, 1994). ISBN:0-7923-9436-4

    Google Scholar 

  5. C.-H. Lin, K. Bult, A 10-b, 500-MSample/s CMOS DAC in 0.6 mm 2. IEEE J. Solid-State Circ. 33(12), 1948–1958 (1998)

    Google Scholar 

  6. A. Van den Bosch, M. Steyaert, W. Sansen; Static and Dynamic Performance Limitations for High Speed D/A Converters (Kluwer Academic Publishers, 2004). ISBN:1-4020-7761-0

    Google Scholar 

  7. P. Kinget, Device mismatch and tradeoffs in the design of analog circuits. IEEE J. Solid-State Circ. 40(6), 1212–1224 (2005)

    Article  Google Scholar 

  8. J. Croon, W. Sansen, H. Maes, Matching Properties of Deep Submicron MOS Transistors (Springer, New York, 2005). ISBN:0-387-24314-3

    Google Scholar 

  9. M. Pelgrom, A. Duinmaijer, A. Welbers, Matching properties of mos transistors. IEEE J. Solid-State Circ. 24(5), 1433–1440 (1989)

    Article  Google Scholar 

  10. J. Bastos, A. Marques, M. Steyaert, W. Sansen, A 12-bit intrinsic accuracy high-speed CMOS DAC. IEEE J. Solid-State Circ. 33(12), 1959–1969 (1998)

    Article  Google Scholar 

  11. M. Clara, W. Klatzer, B. Seger, A. Di Giandomenico, L. Gori, A 1.5V 200MS/s 13b 25mW DAC with Randomized Nested Background Calibration in 0. 13μm CMOS. IEEE International Solid-State Circuits Conference 2007, Digest of Technical Papers, pp. 250–251, 2007

    Google Scholar 

  12. R. Schreier, G. Temes, Understanding Delta-Sigma Data Converters (Wiley, Hoboken, New Jersey, 2004). ISBN:0-471-46585-2

    Google Scholar 

  13. K. Laker, W. Sansen, Design of Analog Integrated Circuits and Systems (McGraw-Hill, New York, 1994). ISBN:00-703-6060-X

    Google Scholar 

  14. Y. Tsivids, C. McAndrew, Operation and Modeling of the MOS Transistor, 3rd edn. (Oxford University Press, New York, 2011). ISBN:978-0-19-517015-3

    Google Scholar 

  15. Y. Nakamura, T. Miki, A. Maeda, H. Kondoh, N. Yazawa, A 10-b 70-MS/s CMOS D/A converter. IEEE J. Solid-State Circ. 26(4), 637–642 (1991)

    Article  Google Scholar 

  16. G. Van Der Plas, J. Vandenbussche, W. Sansen, M. Steyaert, G. Gielen, A 14-bit intrinsic accuracy Q 2 random walk CMOS DAC. IEEE J. Solid-State Circ. 34(12), 1708–1718 (1999)

    Article  Google Scholar 

  17. K. Lakshmikumar, R. Hadaway, M. Copeland, Characterization and modeling of mismatch in MOS transistors for precision analog design. IEEE J. Solid-State Circ. 21(6), 1057–1066 (1986)

    Article  Google Scholar 

  18. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd edn. (McGraw-Hill, 1991). ISBN 0-07-048477-5

    Google Scholar 

  19. G.I. Radulov, M. Heydenreich, R.W. van der Hofstad, J.A. Hegt, A.H.M. van Roermund, Brownian-bridge-based statistical analysis of the DAC INL caused by current mismatch. IEEE Trans. Circ. Syst. II: Analog Digital Signal Process. 54(2), 146–150 (2007)

    Article  Google Scholar 

  20. M. Heydenreich, R. van der Hofstad, G.I. Radulov, Functionals of Brownian bridges arising in the current mismatch in D/A converters. Probab. Eng. Inform. Sci. 23, 149–172 (2009)

    Article  MATH  Google Scholar 

  21. W. Feller, On the Kolmogorov-Smirnov limit theorems for empirical distributions. Ann. Math. Stat. 19(2), 177–189 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Pitman, M. Yor, On the distribution of ranked heights of excursions of a Brownian bridge. Ann. Probab. 29(1), 361–384 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Van den Bosch, M. Steyaert, W. Sansen, An accurate statistical Yield Model for CMOS Current-Steering D/A Converters, in Proceedings of the 2000 International Symposium on Circuits and Systems, vol. 4, pp. IV–105 – IV–108, 2000

    Google Scholar 

  24. K. Lakshmikumar, M. Copeland, R. Hadaway, Reply to “comment on ‘characterization and modeling of mismatch in MOS transistors for precision analog design’”. IEEE J. Solid-State Circ. 23(1), 295–296 (1988)

    Google Scholar 

  25. N. Smirnov, Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat. 19(2), 279–281 (1948)

    Article  MATH  Google Scholar 

  26. B. Razavi, Principles of Data Conversion System Design (Wiley-IEEE Press, New York, 1994). ISBN:978-0-7803-1093-3

    Google Scholar 

  27. S. Luschas, H.-S. Lee, Output Impedance Requirements for DACs. Proceedings of the 2003 International Symposium on Circuits and Systems, vol. 1, pp. I–861 – I–864, 2003

    Google Scholar 

  28. W. Schofield, D. Mercer, L.St. Onge, A 16b 400MS/s DAC with <  − 80dBc IMD to 300MHz and <  − 160dBm/Hz noise power spectral density. IEEE International Solid-State Circuits Conference 2003, Digest of Technical Papers, pp. 126–129, 2003

    Google Scholar 

  29. J.W. Bruce, Dynamic element matching techniques for data converters, Ph.D. dissertation, University of Nevada, Las Vegas, 2000

    Google Scholar 

  30. F. Chen, B. Leung, A high resolution multibit sigma-delta modulator with individual level averaging. IEEE J. Solid-State Circ. 30(4), 453–460 (1995)

    Article  Google Scholar 

  31. S. Norsworthy, R. Schreier, G. Temes, Delta-Sigma Data Converters: Theory, Design and Simulation (Wiley-IEEE Press, New York, 1996). ISBN:0-7803-1045-4

    Google Scholar 

  32. R. Baird, T. Fiez, Improved \(\Delta \Sigma \) DAC linearity using data weighted averaging, in Proceedings of the 1995 International Symposium on Circuits and Systems, vol. 1, pp. I–13 – I–16, 1995

    Google Scholar 

  33. I. Fujimori, L. Longo, A. Hairapetian, K. Seiyama, S. Kosic, C. Jun, S.L. Chan, A 90-dB SNR 2.5-MHz output-rate ADC using cascaded multibit delta-sigma modulation at 8x oversampling ratio. IEEE J. Solid-State Circ. 35(12), 1820–1828 (2000)

    Google Scholar 

  34. M. Clara, A. Wiesbauer, W. Klatzer, Nonlinear distortion in current-steering D/A-converters due to asymmetrical switching errors, in Proceedings of the 2004 International Symposium on Circuits and Systems, vol. 1, pp. I–285 – I–288, 2004

    Google Scholar 

  35. B. Leung, S. Sutarja, Multibit \(\Sigma \)-\(\Delta \) A/D converter incorporating a novel class of dynamic element matching techniques. IEEE Trans. Circ. Syst. II: Analog Digital Signal Process. 39(1), 35–51 (1992)

    Article  Google Scholar 

  36. L. Carley, A noise-shaping coder topology for 15+ bit converters. IEEE J. Solid-State Circ. 24(2), 267–273 (1989)

    Article  Google Scholar 

  37. H. Jensen, I. Galton, A low-complexity dynamic element matching DAC for direct digital synthesis. IEEE Trans. Circ. Syst. II: Analog Digital Signal Process. 45(1), 13–27 (1998)

    Article  Google Scholar 

  38. I. Galton, Spectral shaping of circuit errors in digital-to-analog converters. IEEE Trans. Circ. Syst. II: Analog Digital Signal Process. 44(10), 808–817 (1997)

    Article  Google Scholar 

  39. A. Yasuda, H. Tanimoto, T. Iida, A third-order \(\Delta \Sigma \) modulator using second-order noise-shaping dynamic element matching. IEEE J. Solid-State Circ. 33(12), 1879–1886 (1998)

    Article  Google Scholar 

  40. E. Fogelman, J. Welz, I. Galton, An audio ADC delta-sigma modulator with 100-dB peak SINAD and 102-dB DR using a second-order mismatch-shaping DAC. IEEE J. Solid-State Circ. 36(3), 339–348 (2001)

    Article  Google Scholar 

  41. T. Shui, R. Schreier, F. Hudson, Mismatch shaping for a current-mode multibit delta-sigma DAC. IEEE J. Solid-State Circ. 34(3), 331–338 (1999)

    Article  Google Scholar 

  42. W. Schofield, D. Mercer, L.St. Onge, A 16b 400MS/s DAC with <  − 80dBc IMD to 300MHz and <  − 160dBm/Hz noise power spectral density. IEEE International Solid-State Circuits Conference 2007, Visuals Supplement to the Digest of Technical Papers, pp. 90–91, 2003

    Google Scholar 

  43. Q. Huang, P.A. Francese, C. Martelli, J. Nielsen, A 200MS/s 14b 97mW DAC in 0.18μm CMOS. IEEE International Solid-State Circuits Conference 2004, Digest of Technical Papers, pp. 364–532, 2004

    Google Scholar 

  44. M. Clara, W. Klatzer, D. Gruber, A. Marak, B. Seger, W. Pribyl, A 1.5V 13bit 130–300MS/s self-calibrated DAC with active output stage and 50MHz signal bandwidth in 0. 13μm CMOS, in Proceedings of the 34th European Solid-State Circuits Conference, pp. 262–265, 2008

    Google Scholar 

  45. R. Craven, An integrated circuit 12-bit D/A converter. IEEE International Solid-State Circuits Conference 1975, Digest of Technical Papers, pp. 40–41, 1975

    Google Scholar 

  46. J. Teichmann, K. Burger, W. Hasche, J. Herrfurth, G. Taschner, One time programming (OTP) with Zener diodes in CMOS processes, in Proceedings of the 33th European Solid-State Device Research Conference, pp. 433–436, 2003

    Google Scholar 

  47. G. Erdi, A precision trim technique for monolithic analog circuits. IEEE J. Solid-State Circ. 10(6), 412–416 (1975)

    Article  Google Scholar 

  48. D. Comer, A monolithic 12-bit DAC. IEEE Trans. Circ. Syst. II: Analog and Digital Signal Process. 25(7), 504–509 (1978)

    Google Scholar 

  49. C.-H. Yang, C.-M. Su, Method of forming a metal fuse on semiconductor devices, U.S. Patent 6,835,642, 28 Dec 2004

    Google Scholar 

  50. J. Fellner, P. Boesmueller, H. Reiter, Lifetime study for a poly fuse in a 0.35μm polycide CMOS process. IEEE International Reliability Physics Symposium, pp. 17–21, 2005

    Google Scholar 

  51. P. Pessl, R. Gaggl, J. Hohl, D. Giotta, J. Hauptmann, A four-channel ADSL2+ analog front-end for CO applications with 75 mW per channel, built in 0. 13μm CMOS. IEEE J. Solid-State Circ. 39(12), 2371–2378 (2004)

    Google Scholar 

  52. M. Tiilikainen, A 14-bit 1.8-V 20-mW 1-mm 2 CMOS DAC. IEEE J. Solid-State Circ. 36(7), 1144–1147 (2001)

    Google Scholar 

  53. G.I. Radulov, P. Quinn, J.A. Hegt, A.H.M. van Roermund, An on-chip self-calibration method for current mismatch in D/A converters, in Proceedings of the 31th European Solid-State Circuits Conference, pp. 169–172, 2005

    Google Scholar 

  54. Y. Cong, R.L. Geiger, A 1.5-V 14-bit 100-MS/s self-calibrated DAC. IEEE J. Solid-State Circ. 38(12), 2051–2060 (2003)

    Google Scholar 

  55. A. Bugeja, B.-S. Song, A Self-Trimming 14-b 100-MS/s CMOS DAC. IEEE J. Solid-State Circ. 34(12), 1841–1852 (2000)

    Article  Google Scholar 

  56. G. Wegmann, E. Vittoz, Very accurate dynamic current mirrors. Electron. Lett. 25, 644–646 (1989)

    Article  Google Scholar 

  57. G. Wegmann, E.A. Vittoz, Analysis and improvements of accurate dynamic current mirrors. IEEE J. Solid-State Circ. 25(3), 699–706 (1990)

    Article  Google Scholar 

  58. W. Groeneveld, H. Schouwenaars, H. Termeer, A self calibration technique for monolithic high-resolution D/A converters. IEEE J. Solid-State Circ. 24(6), 1517–1522 (1989)

    Article  Google Scholar 

  59. E. Vittoz, G. Wegmann, Dynamic current mirrors. in Analog IC Design: the Current-mode Approach, ed. by C. Tomazou et al. (Peter Peregrinus, 1990), pp. 297–326. ISBN:0 86341 297 1

    Google Scholar 

  60. G. Wegmann, E. Vittoz, F. Rahali, Charge injection in analog MOS switches. IEEE J. Solid-State Circ. 22(6), 1091–1097 (1987)

    Article  Google Scholar 

  61. C.J.J. Dachs, R. Surdeanu, D. Guyot, A. Parlangeli, Y.V. Ponomarev, P.A. Stolk, Junction leakage in advanced CMOS technologies, in Proceedings of the 31th European Solid-State Device Research Conference, pp. 175–178, 2001

    Google Scholar 

  62. K.M. Cao, W.-C. Lee, W. Liu, X. Jin, P. Su, S.K.H. Fung, J.X. An, B. Yu, C. Hu, BSIM4 gate leakage model including source-drain partition. Technical Digest of the International Electron Devices Meeting IEDM’00, pp. 815–818, 2000

    Google Scholar 

  63. R. Suarez, P. Gray, D. Hodges, All-MOS charge-redistribution analog-to-digital conversion techniques. II. IEEE J. Solid-State Circ. 10(6), 379–385 (1975)

    Article  Google Scholar 

  64. K. Falakshahi, C.-K. Yang, B. Wooley, A 14-bit, 10-Msamples/s D/A converter using multi-bit \(\Sigma \Delta \) modulation. IEEE J. Solid-State Circ. 34(5), 607–615 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clara, M. (2013). Static Linearity. In: High-Performance D/A-Converters. Springer Series in Advanced Microelectronics, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31229-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31229-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31228-1

  • Online ISBN: 978-3-642-31229-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics