Skip to main content

Part of the book series: Springer Finance ((FINANCE))

  • 2077 Accesses

Abstract

Analytical tractability is a desirable property of stochastic stock price models. Informally speaking, a stochastic model is analytically tractable if various important characteristics of the model can be represented explicitly or asymptotically in terms of standard functions of mathematical analysis. Classical stochastic volatility models (Hull-White, Stein-Stein, Heston) are analytically tractable. In this chapter, explicit formulas are obtained for Laplace transforms of mixing densities and Mellin transforms of stock price densities in classical stochastic volatility models. For example, an alternative proof of an explicit formula for the Laplace transform of the distribution density of an integrated geometric Brownian motion due to L. Alili and J.C. Gruet is given. Chapter 4 also contains an explicit formula for the stock price density in the correlated Hull-White model with driftless volatility obtained by Y. Maghsoodi. In addition, Chap. 4 provides explicit formulas for the Mellin transform of the stock price density in the correlated Heston and Stein-Stein models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alili, L., Gruet, J. C., An explanation of a generalized Bboujerol’s identity in terms of hyperbolic geometry, in: Yor, M. (Ed.), Exponential Functionals and Principal Values Related to Brownian Motion, pp. 15–33, Biblioteca de la Revista Matemàtica Ibero-Americana, Madrid, 2007.

    Google Scholar 

  2. Barrieu, P., Rouault, A., Yor, M., A study of the Hartman–Watson distribution motivated by numerical problems related to the pricing of Asian options, Journal of Applied Probability 41 (2004), pp. 1049–1058.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bougerol, Ph., Exemples des théorèmes locaux sur les groupes résolubles, Annales de l’Institut Henry Poincaré 19 (1983), pp. 369–391.

    MathSciNet  MATH  Google Scholar 

  4. del Baño Rollin, S., Ferreiro-Castilla, A., Utzet, F., On the density of log-spot in Heston volatility model, Stochastic Processes and Their Applications 120 (2010), pp. 2037–2062.

    Article  MathSciNet  MATH  Google Scholar 

  5. Flajolet, P., Sedgewick, R., Analytic Combinatorics, Cambridge University Press, Cambridge, 2009.

    Book  MATH  Google Scholar 

  6. Gerhold, S., The Hartman–Watson distribution revisited: asymptotics for pricing Asian options, Journal of Applied Probability 48 (2011), pp. 892–899.

    Article  MathSciNet  MATH  Google Scholar 

  7. Gulisashvili, A., Stein, E. M., Asymptotic behavior of distribution densities in models with stochastic volatility, I, Mathematical Finance 20 (2010), pp. 447–477.

    Article  MathSciNet  MATH  Google Scholar 

  8. Gulisashvili, A., van Casteren, J. A., Non-Autonomous Kato Classes and Feynman–Kac Propagators, World Scientific, Singapore, 2006.

    Book  MATH  Google Scholar 

  9. Hartman, P., Watson, G. S., “Normal” distribution functions on spheres and the modified Bessel functions, Annals of Probability 2 (1974), pp. 593–607.

    Article  MathSciNet  MATH  Google Scholar 

  10. Heston, S. L., A closed-form solution for options with stochastic volatility, with applications to bond and currency options, Review of Financial Studies 6 (1993), pp. 327–343.

    Article  Google Scholar 

  11. Jefferies, B., Evolution Processes and the Feynman–Kac Formula, Kluwer Academic, Dordrecht, 1996.

    MATH  Google Scholar 

  12. Keller-Ressel, M., Moment explosions and long-term behavior of affine stochastic volatility models, Mathematical Finance 21 (2011), pp. 73–98.

    Article  MathSciNet  MATH  Google Scholar 

  13. Maghsoodi, Y., Exact solution of a martingale stochastic volatility option problem and its empirical evaluation, Mathematical Finance 17 (2007), pp. 249–265.

    Article  MathSciNet  MATH  Google Scholar 

  14. Matsumoto, H., Yor, M., Exponential functionals of Brownian motion, I: probability laws at fixed time, Probability Surveys 2 (2005), pp. 312–347.

    Article  MathSciNet  MATH  Google Scholar 

  15. Matsumoto, H., Yor, M., Exponential functionals of Brownian motion, II: some related diffusion processes, Probability Surveys 2 (2005), pp. 348–384.

    Article  MathSciNet  MATH  Google Scholar 

  16. Øksendal, B., Stochastic Differential Equations. An Introduction with Applications, 6th ed., Springer, Berlin, 2003.

    Google Scholar 

  17. Paris, R. B., Kaminski, D., Asymptotics and Mellin–Barnes Integrals, Cambridge University Press, Cambridge, 2001.

    Book  MATH  Google Scholar 

  18. Pitman, J., Yor, M., A decomposition of Bessel bridges, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 59 (1982), pp. 425–457.

    Article  MathSciNet  MATH  Google Scholar 

  19. Revuz, D., Yor, M., Continuous Martingales and Brownian Motion, Springer, Berlin, 2004.

    Google Scholar 

  20. Schöbel, R., Zhu, J., Stochastic volatility with an Ornstein–Uhlenbeck process: an extension, European Finance Review 3 (1999), pp. 23–46.

    Article  MATH  Google Scholar 

  21. Stein, E. M., Stein, J., Stock price distributions with stochastic volatility: an analytic approach, Review of Financial Studies 4 (1991), pp. 727–752.

    Article  Google Scholar 

  22. Wenocur, M. L., Ornstein–Uhlenbeck process with quadratic killing, Journal of Applied Probability 27 (1990), pp. 707–712.

    Article  MathSciNet  MATH  Google Scholar 

  23. Yor, M., Loi de l’indice du lacet Brownien, et distribution de Hartman–Watson, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 53 (1980), pp. 71–95.

    Article  MathSciNet  MATH  Google Scholar 

  24. Yor, M., On some exponential functionals of Brownian motion, Advances in Applied Probability 24 (1992), pp. 509–531.

    Article  MathSciNet  MATH  Google Scholar 

  25. Yor, M., Sur les lois des fonctionells exponentielles du mouvement brownien, considérées en certain instants aléatoires, Comptes Rendus de l’Académie des Sciences de Paris 314 (1992), pp. 951–956.

    MathSciNet  MATH  Google Scholar 

  26. Yor, M., Exponential Functionals of Brownian Motion and Related Processes, Springer, Berlin, 2001.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gulisashvili, A. (2012). Integral Transforms of Distribution Densities. In: Analytically Tractable Stochastic Stock Price Models. Springer Finance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31214-4_4

Download citation

Publish with us

Policies and ethics