Advertisement

Subtle Directional Mammographic Findings in Multiscale Domain

  • Magdalena Jasionowska
  • Artur Przelaskowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7339)

Abstract

The aim of our research is to extract local subtle directional texture orientation on mammographic images using a set of differentiating features calculated in various transformation domains. The main goal in this paper was to establish the usefulness of multiscale transformations, in particular the complex wavelet transform in automatic recognition of indefinite directional pathologies on mammograms. Our initial test was conducted on ROIs of mammograms containing one of typical breast cancer signs - architectural distortions (33 ROIs out of all analyzed 289 ROIs). The promising results have been achieved. It seems that the complex wavelet transform is effective domain to extract well-differentiating features.

Keywords

multiscale domain complex wavelet transform directional features extraction mammogram architectural distortion pathologies detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ayres, F.J., Rangayyan, R.M.: Characterization of architectural distortion in mammograms. IEEE Engineering in Medicine and Biology Magazine 24, 59–67 (2005)PubMedCrossRefGoogle Scholar
  2. 2.
    Baker, J.A., Rosen, E.L., Lo, J.Y., Gimenez, E.I., Walsh, R., Scott Soo, M.: Computer-aided detection in screening mammography: sensitivity of commercial CAD system for detecting architectural distortion. American Journal of Roentgenology 181, 1083–1088 (2003)PubMedGoogle Scholar
  3. 3.
    Birdwell, R.L., Bandodkar, P., Ikeda, D.M.: Computer-aided detection with screening mammography in a University Hospital Setting. Radiology 236, 451–457 (2005)PubMedCrossRefGoogle Scholar
  4. 4.
    Bovik, A.C., Markey, M.K., Sampat, M.P., Whitman, G.J.: Evidence based detection of speculated masses and architectural distortions. In: Medical Imaging: Image Processing, Proc. SPIE, vol. 5747, pp. 26–37 (2005)Google Scholar
  5. 5.
    Digital Database for Screening Mammography (DDSM). University of South Florida, Florida, USA, http://marathon.csee.usf.edu/Mammography/Database.html
  6. 6.
    Dziukowa, J. (red.): Mammografia w diagnostyce raka sutka, Warszawa (1998)Google Scholar
  7. 7.
    Endo, T., Fujita, H., Hara, T., Ichikawa, T., Iwase, T., Matsubara, T.: Automated detection method for architectural distortion areas on mammograms based on morphological processing and surface analysis. In: Medical Imaging: Image Processing, Proc. SPIE, vol. 5370, p. 920 (2004)Google Scholar
  8. 8.
    Kingsbury, N.G.: The dual-tree complex wavelet transform: A new efficient tool for image restoration and enhancement. In: Proc. European Signal Processing Conference, EUSIPCO 1998, Rhodes, pp. 319–322 (1998)Google Scholar
  9. 9.
    Koronacki, J., Ćwik, J.: Statystyczne metody uczące się. Akademicka Oficyna Wydawnicza EXIT. Wydanie drugie, Warszawa (2008)Google Scholar
  10. 10.
    Jasionowska, M., Przelaskowski, A., Rutczynska, A., Wroblewska, A.: A Two-Step Method for Detection of Architectural Distortions in Mammograms. In: Piętka, E., Kawa, J. (eds.) Information Technologies in Biomedicine. AISC, vol. 69, pp. 73–84. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Jasionowska, M., Przelaskowkski, A.: Multiscale modeling of local directional mammogram findings. Journal of Medical Informatics and Technologies 17, 183–190 (2010)Google Scholar
  12. 12.
    Majumdar, A., Bhattachatya, A.: A comparative study in wavelets, curvelets and contourlets as feature sets for pattern recognition. The International Arab Journal of Information Technology 6(1), 47–51 (2009)Google Scholar
  13. 13.
    Musoko, V., Prochazka, A.: Complex wavelet transform in signal and image analysis. In: Proc. of 6th Int. Sc.-Techn. Conference Process Control (2004)Google Scholar
  14. 14.
    Rangayyan, R.M., Ayres, F.J.: Gabor filters and phase portraits for the detection of architectural distortion in mammograms. Medical and Biological Engineering 44(10), 883–894 (2006)CrossRefGoogle Scholar
  15. 15.
    Rangayyan, R.M., Prajna, S., Ayres, F.J., Leo Desautels, J.E.: Detection of architectural distortion in prior screening mammograms using Gabor filters, phase portraits, fractal dimension and texture analysis. International Journal of Computer Assisted Radiology and Surgery 2(6), 347–361 (2008)CrossRefGoogle Scholar
  16. 16.
    Tadeusiewicz, R.: What Does it Means ”Automatic Understanding of the Images”? In: Proceedings of the 2007 IEEE International Workshop on Imaging Systems and Techniques, IEEE Imaging Systems Technical Committee (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Magdalena Jasionowska
    • 1
  • Artur Przelaskowski
    • 1
  1. 1.Institute of RadioelectronicsWarsaw University of TechnologyWarsawPoland

Personalised recommendations