3D Fuzzy Liver Tumor Segmentation

  • Paweł Badura
  • Ewa Pietka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7339)


A semi-automated method for segmentation of liver nodules in Computed Tomography studies is described in this paper. The application is part of a liver cancer computer-aided diagnosis (CAD) system. Its main body consists of the three-dimensional anisotropic diffusion filtering and the adaptive region growing, supported by the fuzzy inference system. Such a workflow enables elimination of noise within the image data, enhances nodule region boundaries, and cuts ,,segmentation leaks”. The outcome is interactively presented to the physician with a possibility left to make manual adjustments. The system has been evaluated using a database of 17 abdominal Computed Tomography studies including 30 various liver nodules outlined by the radiologist, yielding 77% effectiveness (23 cases).


segmentation liver tumor anisotropic diffusion fuzzy inference system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    World Health Organization: Cancer (2012),
  2. 2.
    American Cancer Society: Liver Cancer Overview (2012),
  3. 3.
    Pietka, E., Kawa, J., Spinczyk, D., et al.: Role of Radiologists in CAD Life-Cycle. European Journal of Radiology 78(2), 225–233 (2011)PubMedCrossRefGoogle Scholar
  4. 4.
    Häme, Y.: Liver Tumor Segmentation Using Implicit Surface Evolution. The Midas Journal (2008),
  5. 5.
    Moltz, J., Bornemann, L., Kuhnigk, J., et al.: Advanced Segmentation Techniques for Lung Nodules, Liver Metastases, and Enlarged Lymph Nodes in CT Scans. IEEE Journal on Selected Topics in Signal Processing 3(1), 122–134 (2009)CrossRefGoogle Scholar
  6. 6.
    Qi, Y., Xiong, W., Leow, W., et al.: Semi-automatic Segmentation of Liver Tumors from CT Scans Using Bayesian Rule-based 3D Region Growing. The Midas Journal (2008),
  7. 7.
    Wong, D., Liu, J., Fengshou, Y., et al.: A Semi-automated Method for Liver Tumor Segmentation Based on 2D Region Growing with Knowledge-based Constraints. The Midas Journal (2008),
  8. 8.
    Li, K., Jolly, M.: Simultaneous Detection of Multiple Elastic Surfaces with Application to Tumor Segmentation in CT Images. In: Proc. SPIE, vol. 6914 (2008)Google Scholar
  9. 9.
    Lu, R., Marziliano, P., Thng, C.: Live Tumor Volume Estimation by Semi-Automatic Segmentation Method. In: Proc. IEEE EMBS, pp. 3296–3299 (2005)Google Scholar
  10. 10.
    Stawiaski, J., Decencière, E., Bidault, F.: Interactive Liver Tumor Segmentation Using Graph-cuts and Watershed. The Midas Journal (2008),
  11. 11.
    Zhou, J., Xiong, W., Tian, Q., et al.: Semi-automatic Segmentation of 3D Liver Tumors from CT Scans Using Voxel Classification and Propagational Learning. The Midas Journal (2008),
  12. 12.
    Kubota, T.: Efficient Automated Detection and Segmentation of Medium and Large Liver Tumors: CAD Approach. The Midas Journal (2008),
  13. 13.
    Perona, P., Malik, J.: Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)CrossRefGoogle Scholar
  14. 14.
    Koenderink, J.: The Structure of Images. Biological Cybernetics 50, 363–370 (1984)PubMedCrossRefGoogle Scholar
  15. 15.
    Gonzalez, R., Woods, R.: Digital Image Processing. Prentice Hall, Upper Saddle River (2002)Google Scholar
  16. 16.
    Mamdani, E., Assilan, S.: An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. International Journal of Man-Machine Studies 7(1), 1–13 (1975)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paweł Badura
    • 1
  • Ewa Pietka
    • 1
  1. 1.Faculty of Biomedical EngineeringSilesian University of TechnologyGliwicePoland

Personalised recommendations