Advertisement

Artifical Images for Evaluation of Segmentation Results: Bright Field Images of Living Cells

  • Anna Korzynska
  • Marcin Iwanowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7339)

Abstract

The automated image analysis is a powerful methodology for quantification microscopic images of living cells. But the proper and suitable indication of cells’ body in various kinds of microscopic images of cells is still not easy to perform. In this paper the methodology how to construct artificial images simulating bright field microscopic images is introduced. Using the adjusted and simplified version of software SIMCEP, prepared by Lehmussola and coworkers, proposed methodology is implemented and validated.

Keywords

simulation of mikroscopic images bright fiels microscopy images biomedical image processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberts, B., Bray, D., Lewis, J., Raf, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell, 3rd edn. Garland Publishing Inc., New York (1994)Google Scholar
  2. 2.
    Altman, D.G., Bland, J.M.: Diagnostic Tests. 1: Sensitivity and Specificity. British Medical Journal 11 (1994)Google Scholar
  3. 3.
    Buzanska, L., Jurga, M., Stachowiak, E.K., Stachowiak, M.K., Domanska-Janik, K.: Stem Cell and Development, vol. 15, pp. 391–406 (2006)Google Scholar
  4. 4.
    Buzanska, L., Machaj, E.K., Zabłocka, B., Podja, Z., Domanska-Janik, K.: Human cord blood-derived cells attain neuronal and glial features in vitro. J. Cell Sci. 115, 2131–2138 (2002)PubMedGoogle Scholar
  5. 5.
    Boezeman, B., Raymakers, R., Vierwinden, G., Linssen, P.: Automatic analysis of growth onset, growth rate and colony size of individual bone marrow progenitors. Cytometry 28, 305–310 (1997)PubMedCrossRefGoogle Scholar
  6. 6.
    Czajkowska, J., Badura, P., Pietka, E.: 4D Segmentation of Ewing’s Sarcoma in MR Images. In: Piętka, E., Kawa, J. (eds.) Information Technologies in Biomedicine. AISC, vol. 69, pp. 91–100. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Czajkowska, J., Pietka, E., Kieltyka, A.: Multilevel Segmentation of Ewing’s Sarcoma Tumours in MR Images. Int. J. of Computer Assisted Radiology and Surgery 5, 344–345 (2010)Google Scholar
  8. 8.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)Google Scholar
  9. 9.
    Hoppe, A., Korzynska, A., Wertheim, D.: A computer system for the analysis of neutrophil movement. Med. Biol. Eng. Comput. 37, 1000–1001 (1999)CrossRefGoogle Scholar
  10. 10.
    Iwanowski, M., Korzynska, A.: Detection of the Area Covered by Neural Stem Cells in Cultures Using Textural Segmentation and Morphological Watershed. In: Kurzynski, M., Wozniak, M. (eds.) Computer Recognition Systems 3. AISC, vol. 57, pp. 543–557. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Iwanowski, M., Korzyńska, A.: Segmentation of Moving Cells in Bright Field and Epi-Fluorescent Microscopic Image Sequences. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010. LNCS, vol. 6374, pp. 401–410. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Kaufman, H., Tekalp, M.: Survey of estimation techniques in image restoration. IEEE Contr. Syst. 11(1), 16–24 (1991)CrossRefGoogle Scholar
  13. 13.
    Korzynska, A.: Automatic Counting of Neural Stem Cells Growing in Cultures. In: Kurzynski, M., Puchala, E., Wozniak, M., Zolnierek, A. (eds.) Computer Recognition Systems 2. ASC, vol. 45, pp. 604–612. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Korzynska, A., Iwanowski, M., Neuman, U., Dobrowolska, E., Hoser, P.: Comparison of the Methods of Microscopic Image Segmentation. In: Dössel, O., Schlegel, W.C. (eds.) WC 2009. IFMBE Proc., vol. 25/IV, pp. 425–428. Springer, Heidelberg (2009)Google Scholar
  15. 15.
    Korzynska, A., Jurga, M., Domanska-Janik, K., Strojny, W., Wloskowicz, D.: Analysis of Stem Cell Clonal Growth. In: Kurzynski, M., Puchala, E., Wozniak, M., Zolnierek, A. (eds.) Computer Recognition Systems. ASC, vol. 1, pp. 577–584. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Korzynska, A., Strojny, W., Hoppe, A., Wertheim, D., Hoser, P.: Segmentation of microscope images of living cells. Pattern. Anal. Appl. 10, 301–319 (2007)CrossRefGoogle Scholar
  17. 17.
    Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., Yli-Harja, O.: Computational Framework for Simulating Fluorescece Microscope Images With Cell Population. IEEE Tran. on Med. Imaging 26(7) (2007)Google Scholar
  18. 18.
    Lehmussola, A., Selinummi, J., Ruusuvuori, P., Niemisto, A., Yli-Harja, O.: Simulating fluorescent microscope images of cell populations. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China (2005)Google Scholar
  19. 19.
    Lewinska, D., Bukowski, J., Kozuchowski, M., Kinasiewicz, A., Werynsk, A.: Electrostatic microencapsulation of living cells. Biocybern. Biomed. Eng. 28, 69–84 (2008)Google Scholar
  20. 20.
    Liao, Q., Deng, Y.: An accurate segmentation method for white blood cell images. In: Proc. Int. Symp. on Biomedical Imaging, pp. 245–248 (2002)Google Scholar
  21. 21.
    Markiewcz, T., Osowski, S.: Morphological operations for blood cells extraction from the image of the bone marrow smear. Prz. Elektrotechniczn. 84, 24–26 (2008)Google Scholar
  22. 22.
    Markiewicz, T., Wisniewsk, P., Osowski, S., Patera, J., Kołowski, W., Koktysz, R.: Comparative analysis of methods for accurate recognition of cells through nuclei staining of KI-67 in neuroblastoma and estrogen/progesteronestatus staining in breast cancer. Anal. Quant. Cytol. Histol. 31, 49–62 (2009)PubMedGoogle Scholar
  23. 23.
    Neuman, U., Korzynska, A., Lopez, C., Lejeun, M.: Segmentation of Stained Lymphoma Tissue Section Images. In: Pieta, E., Kawa, J. (eds.) Information Technology in Biomedicine 2. ASC, vol. 69, pp. 101–113. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Neuman, U., Korzynska, A., Lopez, C., Leujene, M., Bosch, R.: Intensity correction of the immunohistochmically stained tessue sections images influence on results of segmentation accurence. In: TPO 2010 Conference Proceedings, pp. 35–40 (2010) (in polish) Google Scholar
  25. 25.
    Neuman, U., Korzynska, A., Lopez, C., Leujene, M., Bosch, R.: Equalisation of archival microscopic images from immunohistochmically stained tissue sections. Accepted for Biocyb. and Biomed. Eng. (2012)Google Scholar
  26. 26.
    Ongun, G., Halici, U., Leblebicioglu, K., Atalay, V., Beksac, M., Beksak, S.: An automated differential blood count system. P. Ann. Int. IEEE EMBS 3, 2583–2586 (2001)Google Scholar
  27. 27.
    Perlin, K.: An image synthetizer. Comput. Graph. 19, 287–296 (1985)CrossRefGoogle Scholar
  28. 28.
    Pham, D.L., Xu, C., Prince, J.L.: A survey of current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2, 315–338 (2000)PubMedCrossRefGoogle Scholar
  29. 29.
    Proffitt, R., Tran, J.V., Reynolds, C.P.: A fluorescence digital image microscopy system for quantifying relative cell numbers in tissue culture plates. Cytometry 24, 204–213 (1996)PubMedCrossRefGoogle Scholar
  30. 30.
    Russ, J.C.: Image Processing Handbook, 4th edn. CRC Press, Tokyo (2002)Google Scholar
  31. 31.
    Selinummi, J., Ruusuvuori, P., Podolsky, P., Ozinsky, I.A., Gold, E., Yli-Harja, O., Aderem, A., Shmulevich, I.: Bright field microscopy as an alternative to whole cell fluorescence in automated analysis of macrophage images. PLoS One 4(10), e7497 (2009)Google Scholar
  32. 32.
    Solorzano, C.O., Rodgirguez, E.G., Jone, S.A., Pinkel, J., Gray, J.W.: Segentation of Confocal Microscope Images of Cell Nuclei in Thick Tissue Section. J. Microsc. 193, 212–226 (1999)CrossRefGoogle Scholar
  33. 33.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anna Korzynska
    • 1
  • Marcin Iwanowski
    • 2
  1. 1.Nalecz Institute of Biocybernetics and Biomedical EngineeringPolish Academy of SciencesWarszawaPoland
  2. 2.Institute of Control and Industrial ElectronicsWarsaw University of TechnologyWarszawaPoland

Personalised recommendations