Advertisement

Neural Network-Based Method for Peptide Identification in Proteomics

  • Lech Raczynski
  • Tymon Rubel
  • Krzysztof Zaremba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7339)

Abstract

Protein identification in biological samples is one of the main objectives of proteomics. In proteomic experiments proteins are first digested into short peptides, which are next analyzed using tandem mass spectrometry and identified by database search algorithms. In this study a novel neural network-based method for peptide identification is proposed. The presented method improves the identification efficiency by the incorporation of additoinal peptide-specific features and scores from multiple database search algorithms. Moreover, the method for filtering out low quality mass spectra prior to database search in order to reduce the overall computational time of the identification process is presented.

Keywords

proteomics mass spectrometry artificial neural networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature 422, 198–207 (2003)PubMedCrossRefGoogle Scholar
  2. 2.
    Bern, M., Goldberg, D.: Automatic Quality Assessment of Peptide Tandem Mass Spectra. Bioinformatics 20(suppl. 1), I49–I54 (2004)Google Scholar
  3. 3.
    Craig, R., Beavis, R.C.: Tandem: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467 (2004)PubMedCrossRefGoogle Scholar
  4. 4.
    Elias, J.E., Gygi, S.: Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature Methods (2007), doi:10.1038/NMETH1019Google Scholar
  5. 5.
    Eng, J.K.: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom 5, 976–989 (1994)CrossRefGoogle Scholar
  6. 6.
    Fine, T.L.: Feedforward Neural Networks Methodology. Springer, New York (1999)Google Scholar
  7. 7.
    Kall, L., Canterbury, J.D., Weston, J., Noble, W.S., MacCoss, M.J.: Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods 4, 923–925 (2007)PubMedCrossRefGoogle Scholar
  8. 8.
    Keller, A., Eng, J., Zhang, N., Li, X., Aebersold, R.: A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Molecular Systems Biology (2005), doi:10.1038/msb4100024Google Scholar
  9. 9.
    Malinowska, A., Szybinska, A., Rubel, T., Wyslouch-Cieszynska, A., Dadlez, M.: Qualitative and Quantitative Proteomic Profiling of Synaptosomes from Mouse Models of Alzheimer’s Disease. In: 8th Siena Meeting From Genome to Proteome: Integration and Proteome Completion (2008)Google Scholar
  10. 10.
    Mann, M., Hendrickson, R.C., Pandey, A.: Analysis of proteins and proteomes by mass spectrometry. Annual Rev. Biochem. 70, 437–473 (2001)CrossRefGoogle Scholar
  11. 11.
    Mikula, M., Gaj, P., Dzwonek, K., Rubel, T., Karczmarski, J., Paziewska, A., Dzwonek, A., Bragoszewski, P., Dadlez, M., Ostrowski, J.: Comprehensive Analysis of the Palindromic Motif TCTCGCGAGA: A Regulatory Element of the HNRNPK Promoter. DNA Research 17, 245–260 (2010)PubMedCrossRefGoogle Scholar
  12. 12.
    Nesvizhskii, A.I., Roos, F.F., Grossmann, J., Vogelzang, M., Eddes, J.S., Gruissem, W., Baginsky, S., Aebersold, R.: Dynamic Spectrum Quality Assessment and Iterative Computational Analysis of Shotgun Proteomic Data. Molecular & Cellular Proteomics 5, 652–670 (2006)CrossRefGoogle Scholar
  13. 13.
    Perkins, D.N.: Probability-based protein identification by searching sequence database using mass spectrometry data. Electorphoresis 20, 3551–3567 (1999)CrossRefGoogle Scholar
  14. 14.
    Purvine, S., Kolker, N., Kolker, E.: Spectral Quality Assessment for High-Throughput Tandem Mass Spectrometry Proteomics. OMICS 8, 255–265 (2004)PubMedCrossRefGoogle Scholar
  15. 15.
    Raczynski, L., Rubel, T., Zaremba, K.: Proteins and peptides identification from MS/MS data in proteomics. Biocybernetics and Biomedical Engineering 30, 35–47 (2010)Google Scholar
  16. 16.
    Storey, J.D., Tibshirani, R.: Statistical significance for genome-wide studies. Proc. Natl. Acad. Sci. U.S.A. 100, 9440–9445 (2003)PubMedCrossRefGoogle Scholar
  17. 17.
    Xu, M., Geer, L.Y., Bryant, S.H., Roth, J.S., Kowalak, J.A., Maynard, D.M., Markey, S.P.: Assessing Data Quality of Peptide Mass Spectra Obtained by Quadrupole Ion Trap Mass Spectrometry. J. Proteome Res. 4, 300–305 (2005)PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang, J., Ma, J., Dou, L., Wu, S., Qian, X., Xie, H., Zhu, Y., He, F.: Bayesian nonparametric model for the validation of peptide identification in shotgun proteomics. Molecular & Cellular Proteomics 8, 547–557 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lech Raczynski
    • 1
  • Tymon Rubel
    • 1
  • Krzysztof Zaremba
    • 1
  1. 1.Institute of RadioelectronicsWarsaw University of TechnologyWarsawPoland

Personalised recommendations