Effect of Surface Pretreatment on Corrosion Resistance of Anodically Oxidized Ti6Al7Nb Alloy

  • Janusz Szewczenko
  • Jan Marciniak
  • Jadwiga Tyrlik-Held
  • Katarzyna Nowińska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7339)


Results presented in the paper are an attempt of defining the influence of selected preliminary treatments of surface on the final biocompatibility of anodized Ti6Al7Nb alloy. The anodization process was preceded by combination of different surface modification treatments including grinding, vibration machining, mechanical polishing, sandblasting and electropolishing. Steam sterilization was the final surface modification treatment.

Range of research included: surface roughness tests, crevice and pitting corrosion investigations in Ringer’s solution, determination of concentration of metallic elements which penetrated to the solution after 28 days exposition and microscopic observations of the specimens surface.

The results of research have shown significant influence of preliminary methods of surface preparing which precede anodization. Preliminary preparing of the surface to anodization, as a multistage process, can not be understood solely as a single treatment which directly preceded anodization process. In fact, all the earlier treatments of surface modification before anodization have influence on corrosion resistance.


Corrosion Resistance Polarization Resistance Ringer Solution NiTi Alloy Crevice Corrosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ISO 10993-15:2000: Biological evaluation of medical devices - Part 15: Identification and quantification of degradation products from metals and alloys (2000)Google Scholar
  2. 2.
    ASTM F 746-04(2009)e1: Standard test method for pitting or crevice corrosion of metallic surgical implant materials (2009).Google Scholar
  3. 3.
    Kaczmarek, M.: Investigation of pitting and crevice corrosion resistance of NiTi alloy by means of electrochemical methods. Przegląd Elektrotechniczny 86(12), 102–105 (2010)Google Scholar
  4. 4.
    Kaczmarek, M., Walke, W., Paszenda, Z.: Application of electrochemical impedance spectroscopy in evaluation of corrosion resistance of Ni-Ti alloy. Przegląd Elektrotechniczny 87(12b), 74–77 (2011)Google Scholar
  5. 5.
    Paszenda, Z., Tyrlik-Held, J., Nawrat, Z., Żak, J., Wilczek, J.: Usefulness of passive-carbon layer for implants applied in interventional cardiology. Journal of Materials Processing Technology 157-158C, 399–404 (2004)CrossRefGoogle Scholar
  6. 6.
    Paszenda, Z.: Application Problems of Implants Used in Interventional Cardiology. In: Pietka, E., Kawa, J. (eds.) Information Tech. in Biomedicine. ASC, vol. 47, pp. 15–27. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Basiaga, M., Paszenda, Z., Walke, W.: Study of electrochemical properties of carbon coatings used in medical devices. Przegląd Elektrotechniczny 87(12b), 12–15 (2011)Google Scholar
  8. 8.
    Kajzer, W., Krauze, A., Kaczmarek, M., Marciniak, J.: FEM Analisys of the Expandable Intramedullar Nail. In: Pietka, E., Kawa, J. (eds.) Information Tech. in Biomedicine. ASC, vol. 47, pp. 537–544. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Ziębowicz, A., Marciniak, J.: The use of miniplates in mandibular fractures-biomechanical analysis. Journal of Materials Processing Technology 175(1-3), 452–456 (2006)CrossRefGoogle Scholar
  10. 10.
    Marciniak, J.: Biomateriały. Wydawnictwo Politechniki Śląskiej, Gliwice (2002)Google Scholar
  11. 11.
    Tamilselvi, S., Raman, V., Rajendran, N.: Corrosion behaviour of Ti-6Al-7Nb and Ti-6Al-4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochimica Acta 52(3), 839–846 (2006)CrossRefGoogle Scholar
  12. 12.
    Sittig, C., Textor, M., Spencer, N.D., Wieland, M., Vallotton, P.-H.: Surface characterization of implant materials c.p. Ti, Ti-6Al-7Nb and Ti-6Al-4V with different pretreatments. Journal of Materials Science: Materials in Medicine 10(1), 35–46 (1999)PubMedCrossRefGoogle Scholar
  13. 13.
    Simka, W., Kaczmarek, M., Baron-Wiecheć, A., Nawrat, G., Marciniak, J., Żak, J.: Electropolishing and passivation of NiTi shape memory alloy. Electrochimica Acta 55(7), 2437–2441 (2010)CrossRefGoogle Scholar
  14. 14.
    Wierzchoń, T., Czarnowska, E., Krupa, D.: Inżynieria powierzchni w wytwarzaniu biomateriałów tytanowych. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa (2004)Google Scholar
  15. 15.
    Czarnowska, E., Zajączkowska, A., Major, R., Morgiel, J., Wierzchoń, T.: Kształtowanie własności implantów tytanowych metodami inżynierii powierzchni. Inżynieria Powierzchni 3, 13–18 (2007)Google Scholar
  16. 16.
    Nagy, P.M., Ferencz, B., Kálmán, E., Djuricić, B., Sonnleitner, R.: Morphological evolution of Ti surfaces during oxidation treatment. Materials and Manufacturing Processes 20(5), 105–114 (2005)CrossRefGoogle Scholar
  17. 17.
    Cabrini, M., Cigada, A., Rondelli, G., Vicentini, B.: Effect of different surface finishing and of hydroxyapatite coating on passive and corrosion current of Ti6Al4V alloy in simulated physiological solution. Biomaterials 18, 783–787 (1997)PubMedCrossRefGoogle Scholar
  18. 18.
    Van Gils, S., Mast, P., Stijns, E., Terryn, H.: Colour properties of barrier anodic oxide films on aluminium and titanium studied with total reflectance and spectroscopic ellipsometry. Surface and Coatings Technology 185(2-3), 303–310 (2004)CrossRefGoogle Scholar
  19. 19.
    Song, H.-J., Kim, M.-K., Jung, G.-C., Vang, M.-S., Park, Y.-J.: The effects of spark anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics. Surface and Coatings Technology 201, 8738–8745 (2007)CrossRefGoogle Scholar
  20. 20.
    Narayanan, R., Seshadri, S.K.: Phosphoric acid anodization of Ti-6Al-4V - Structural and corrosion aspects. Corrosion Science 49, 542–558 (2007)CrossRefGoogle Scholar
  21. 21.
    Szewczenko, J., Walke, W., Nowińska, K., Marciniak, J.: Corrosion resistance of Ti-6Al-4V alloy after diverse surface treatments. In: Materialwissenschaft und Werkstofftechnik, vol. 41, pp. 360–371. Wiley-Vch Verlag GmbH and Co. KGaA, Weinheim, Weinheim (2010)Google Scholar
  22. 22.
    Szewczenko, J., Nowińska, K., Marciniak, J.: Influence of initial surface treatment on corrosion resistance of Ti6Al4V ELI alloy after anodizing. Przegląd Elektrotechniczny 3, 228–231 (2011)Google Scholar
  23. 23.
    ISO 5832-11:1994 Implants for surgery - Metallic materials - Part 11: Wrought titanium 6-aluminium 7-niobium alloy (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Janusz Szewczenko
    • 1
  • Jan Marciniak
    • 1
  • Jadwiga Tyrlik-Held
    • 1
  • Katarzyna Nowińska
    • 2
  1. 1.Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices EngineeringSilesian University of TechnologyGliwicePoland
  2. 2.Institute of Applied Geology, Faculty of Mining and GeologySilesian University of TechnologyGliwicePoland

Personalised recommendations