Advertisement

Electrochemical Properties of Ti-6Al-4V ELI Alloy after Anodization

  • Marta Kiel
  • Janusz Szewczenko
  • Jan Marciniak
  • Katarzyna Nowińska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7339)

Abstract

Techniques of surface modification are very important in forming final physicochemical properties and biocompability of titanium alloys. Quality of surface layer is determined by metallic ions infiltrating to body fluid and tissue environment. Performing anodization process as a final technological treatment we could minimalizing that effect. A prior mechanical treatment which could be performed in different ways, we can influence final properties. Different variants of mechanical treatment connected with anodization process require insightful quantitative evaluation. Especially surface final physicochemical properties are need to be checked in order to assess the effectiveness of metallic ions infiltration blocking on the reservoir layer, what is strongly bounded with the initiation and development of implant corrosion process. The aim of the work were the research on ways and conditions and surface treatment of Ti-6Al-4V ELI alloy for physicochemical properties to implantation applications.

Keywords

titanium alloys surface modification corrosion resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marciniak, J.: Biomateriały. Wydawnictwo Politechniki Śląskiej, Gliwice (2002)Google Scholar
  2. 2.
    Wierzchoń, T., Czarnowska, E., Krupa, D.: Inżynieria powierzchni w wytwarzaniu biomateriałów tytanowych. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa (2004)Google Scholar
  3. 3.
    Trzaska, M., Trzaska, Z.: Elektrochemiczna spektroskopia impedancyjna w inżynierii materiałowej. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa (2010)Google Scholar
  4. 4.
    Czarnowska, E., Zajączkowska, A., Major, R., Morgiel, J., Wierzchoń, T.: Kształtowanie własności implantów tytanowych metodami inżynierii powierzchni. Inżynieria Powierzchni 3, 13–18 (2007)Google Scholar
  5. 5.
    Walke, W., Przondziono, J.: Physicochemical properties of passive layer on the surface of guide wire used in endourology. Metalurgija 50(3), 201–204Google Scholar
  6. 6.
    Paszenda, Z., Tyrlik-Held, J., Nawrat, Z., Żak, J., Wilczek, J.: Usefulness of passive-carbon layer for implants applied in interventional cardiology. Journal of Materials Processing Technology 157-158C, 399–404 (2004)CrossRefGoogle Scholar
  7. 7.
    Chrzanowski, W., Szewczenko, J., Tyrlik-Held, J., Marciniak, J., Zak, J.: Influence of the anodic oxidation on the physicochemical properties of the Ti6Al4V ELI alloy. Journal of Materials Processing Technology (Spec. Iss.) 162-163, 163–168 (2005)Google Scholar
  8. 8.
    Paszenda, Z.: Application Problems of Implants Used in Interventional Cardiology. In: Pietka, E., Kawa, J. (eds.) Information Tech. in Biomedicine. ASC, vol. 47, pp. 15–27. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Chrzanowski, W., Neel, E.A.A., Armitage, D.A., Lee, K., Walke, W., Knowles, J.C.: Nanomechanical evaluation of nickel-titanium surface properties after alkali and electrochemical treatments. Journal of the Royal Society Interface 5(26), 1009–1022Google Scholar
  10. 10.
    Szewczenko, J., Pochrząst, M., Walke, W.: Evaluation of electrochemical properties of modified Ti-6Al-4V ELI alloy. Przegląd Elektrotechniczny 87(12B), 177–180Google Scholar
  11. 11.
    Krauze, A., Ziębowicz, A., Marciniak, J.: Corrosion resistance of intramedullary nails used in elastic osteosynthesis of children. Journal of Materials Processing Technology (Spec. Iss.) 162-163, 209–214 (2005)CrossRefGoogle Scholar
  12. 12.
    Kaczmarek, M., Walke, W., Paszenda, Z.: Application of electrochemical impedance spectroscopy in evaluation of corrosion resistance of Ni-Ti alloy. Przegląd Elektrotechniczny 87(12B), 74–77 (2011)Google Scholar
  13. 13.
    Basiaga, M., Paszenda, Z., Walke, W.: Study of electrochemical properties of carbon coatings used in medical devices. Przegląd Elektrotechniczny 87(12b), 12–15 (2011)Google Scholar
  14. 14.
    Walke, W., Przondziono, J.: A comparative study of the corrosion of wire used in urological treatment under sterilisation. Metalurgija 51(2), 237–240Google Scholar
  15. 15.
    Kaczmarek, M.: Investigation of pitting and crevice corrosion resistance of NiTi alloy by means of electrochemical methods. Przeglad Elektrotechniczny 86(12), 102–105 (2010)Google Scholar
  16. 16.
    ISO 5832/3:1996: Implants for surgery - metallic materials - Part 3: Wrought Titanium 6-Aluminium 4-Vanadium alloyGoogle Scholar
  17. 17.
    Standard ASTM F 746-04(2009)e1: Standard test method for pitting or crevice corrosion of metallic surgical implant materials (2009)Google Scholar
  18. 18.
    Szewczenko, J., Marciniak, J., Tyrlik-Held, J., Kiel, M.: Biokompatybilność utlenianego anodowo stopu Ti-6Al-4V ELI. Inżynieria Materiałowa 4(182), 751–755 (2011)Google Scholar
  19. 19.
    Narayanan, R., Seshadri, S.K.: Phosphoric acid anodization of Ti-6Al-4V - Structural and corrosion aspects. Corrosion Science 49, 542–558 (2007)CrossRefGoogle Scholar
  20. 20.
    Roessler, S., Zimmermann, R., Scharnweber, D., Werner, C., Worch, H.: Characterization of oxide layers on Ti6Al4V and titanium by streaming potential and streaming current measurement. Colloids and Surfaces B: Biointerfaces 26, 387–395 (2002)CrossRefGoogle Scholar
  21. 21.
    Szewczenko, J., Nowińska, K., Marciniak, J.: Influence of initial surface treatment on corrosion resistance of Ti6Al4V ELI alloy after anodizing. Electrical Review 3, 228–231 (2011)Google Scholar
  22. 22.
    Cabrini, M., Cigada, A., Rondelli, G., Vicentini, B.: Effect of different surface finishing and of hydroxyapatite coating on passive and corrosion current of Ti6Al4V alloy in simulated physiological solution. Biomaterials 18, 783–787 (1997)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marta Kiel
    • 1
  • Janusz Szewczenko
    • 1
  • Jan Marciniak
    • 1
  • Katarzyna Nowińska
    • 2
  1. 1.Faculty of Biomedical Engineering Department of Biomaterials and Medical Devices EngineeringSilesian University of TechnologyGliwicePoland
  2. 2.Faculty of Mining and Geology, Institute of Applied GeologySilesian University of TechnologyGliwicePoland

Personalised recommendations