Advertisement

Segmentation of the Left Ventricle Using Active Contour Method with Gradient Vector Flow Forces in Short-Axis MRI

  • Tomasz Pieciak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7339)

Abstract

In this paper a left ventricle segmentation approach in short-axis MRI is proposed. It is based on an active contour method and gradient vector flow field forces. Firstly, algorithm delineates endocardium using active contour method approach assisted by gradient vector flow field forces. After that, the epicardium is outlined by proposed divergence rays method and corrected by Fourier descriptors to smoothen an epicardium curve.

An algorithm has been tested on eight healthy patients and compared to a manual delineation of endo- and epicardium boundaries. Validity of an algorithm is checked by linear regression analysis, correlation coefficients, and RSME errors. Sample Pearson product-moment correlation coefficients between automatic and manual delineation are r ENDO  = 0.95 and r EPI  = 0.86. The coefficients of determination and RMSEs are \(R^2_{ENDO}=0.9\), \(R^2_{EPI}=0.74\) and \(RMSE_{ENDO}=5.303 \ ml\), \(RMSE_{EPI}=21.973 \ ml\), respectively. These experiments confirm accuracy and robustness of the proposed approach.

Keywords

left ventricle image segmentation active contour gradient vector flow Fourier descriptors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Diri, B., Hunter, A., Steel, D.: An Active Contour Model for Segmenting and Measuring Retinal Vessels. IEEE Trans. Med. Imag. 28(9), 315–333 (2009)CrossRefGoogle Scholar
  2. 2.
    Cocosco, C.A., Niessen, W.J., Netsch, T., Vonken, E.J., Lund, G., Stork, A., Viergever, M.A.: Automatic Image-Driven Segmentation of the Ventricles in Cardiac Cine MRI. J. Magn. Reson. Imaging 28, 1013–1015 (2008)CrossRefGoogle Scholar
  3. 3.
    Cohen, L.D.: On Active Contour Models and Balloons. CVGIP: Image Understand. 53, 211–218 (1991)CrossRefGoogle Scholar
  4. 4.
    Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using MATLAB. Pearson Prentice Hall (2003)Google Scholar
  5. 5.
    Guttman, R.L., Zerhouni, E.A., McVeigh, E.R.: Analysis of Cardiac Function from MR Images. IEEE Comput. Graph. Appl. 17(1), 30–38 (2008)CrossRefGoogle Scholar
  6. 6.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. Int. J. Comput. Vision 1, 321–331 (1988)CrossRefGoogle Scholar
  7. 7.
    Kurkure, U., Pednekar, A., Muthupillai, R., Flamm, S.D., Kakadiaris, I.A.: Localization and Segmentation of Left Ventricle in Cardiac Cine-MR Images. IEEE Trans. Biomed. Eng. 56(5), 1360–1370 (2009)PubMedCrossRefGoogle Scholar
  8. 8.
    Lee, H.-Y., Codella, N.C.F., Cham, M.D., Weinsadt, J.W., Wang, Y.: Automatic Left Ventricle Segmentation Using Iterative Tresholding and an Active Contour Model With Adaptation on Short-Axis Cardiac MRI. IEEE Trans. Biomed. Eng. 57(3), 905–913 (2010)PubMedGoogle Scholar
  9. 9.
    Li, B., Acton, S.T.: Active Contour External Force Using Vector Field Convolution for Image Segmentation. IEEE Trans. Image Process. 16(8), 2096–2106 (2007)PubMedCrossRefGoogle Scholar
  10. 10.
    Li, B., Acton, S.T.: Automatic Active Model Initialization via Poisson Inverse Gradient. IEEE Trans. Image Process. 17(8), 1406–1420 (2008)PubMedCrossRefGoogle Scholar
  11. 11.
    Paragios, N.: A Level Set Approach for Shape-Driven Segmentation and Tracking of the Left Ventricle. IEEE Trans. Med. Imag. 22(6), 773–776 (2003)CrossRefGoogle Scholar
  12. 12.
    Petitjean, C., Dacher, J.-N.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15(2), 169–184 (2011)PubMedCrossRefGoogle Scholar
  13. 13.
    Pieciak, T.: Myocardial Segmentation Based on Magnetic Resonance Sequences. Bio-Algorithms and Med-Systems 6(12), 85–90 (2010)Google Scholar
  14. 14.
    Silveira, M., Marques, J.: Automatic segmentation of the lungs using multiple active contours outlier model. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 3122–3125 (2006)Google Scholar
  15. 15.
    Tauber, C., Batatia, H., Ayache, A.: A general quasi-automatic initialization for snakes: application to ultrasound images. In: IEEE Int. Conf. Imag. Process., pp. 806–809 (2005)Google Scholar
  16. 16.
    Tracz, P., Szczepaniak, P.S., Tomczyk, A.: Application of active region model for detection of liver cancer. J. Med. Inform. & Technol. 17, 263–268 (2011)Google Scholar
  17. 17.
    van Assen, H.C., Danilouchkine, M.G., Dirksen, M.S., Reiber, J.H.C., Lelieveldt, B.P.F.: A 3-D Active Shape Model Driven by Fuzzy Inference: Application to Cardiac CT and MR. IEEE Trans. Inf. Technol. Biomed. 12(5), 595–605 (2008)PubMedCrossRefGoogle Scholar
  18. 18.
    Wang, G., Guo, Y., Zhang, S., Ma, Y.: A Novel Segmentation Method for Left Ventricular from Cardiac MR Images Based on Improved Markov Random Field Model. In: Int. Congress Image Process., pp. 1–5 (2009)Google Scholar
  19. 19.
    Xiang, L., Cowan, B., Young, A.: Model-based Graph Cut Method for Segmentation of the Left Ventricle. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 3059–3062 (2005)Google Scholar
  20. 20.
    Xu, C., Prince, J.L.: Snakes, Shapes and Gradient Vector Flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomasz Pieciak
    • 1
  1. 1.Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of AutomaticsAGH University of Science and TechnologyKrakówPoland

Personalised recommendations