Evidence of S. Cerevisiae Proliferation Rate Control via Exogenous Low Frequency Electromagnetic Fields

  • Jan Barabas
  • Roman Radil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7339)


Preliminary evidence of S. Cerevisiae proliferation rate control using exogenous low-frequency electromagnetic fields has been experimentally observed. Two different yeast strands have been subjected to multiple 66 hour sessions of EM exposure (frequency 1,2; 1,4; 1,6; 1,8; 2,0 kHz, average magnetic flux density 2,3 mT) under identical ambient conditions. The results indicate an interesting phenomenon – both proliferative and anti-proliferative effects were observed, depending on the applied frequency and strand type used. The results suggest a frequency-selective behavior and could be potentially explored in future therapeutic applications wherein targeted cell growth control is of interest.


electromagnetic fields bioeffect yeast proliferation microtubules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cifera, M.: Electromagnetic cellular interactions. Prog. Biophys. Mol. Biol. 105(3), 223–246 (2010); Epub. July 30 CrossRefGoogle Scholar
  2. 2.
    Iarc Monographs - agent classification, (available online January 12, 2012)
  3. 3.
    Nitiss, J., Heitman, J.: Yeast as a tool in cancer research. Springer (2010) ISBN 978-1402059629Google Scholar
  4. 4.
    Weeb, S.J., Stoneham, M.E., Frohlich, H.: Evidence for non-thermal excitation of energy levels in active biological systems. Physics Letters A 63, 407 (1977)CrossRefGoogle Scholar
  5. 5.
    Pokorný, J.: Cancer physics: diagnostics based on damped cellular vibrations in microtubules. Eur. Biophys. J. 40, 747–759 (2011)PubMedCrossRefGoogle Scholar
  6. 6.
    Pokorný, J.: Measurement of Yeast Cell Electrical Oscillations around 1 kHz. In: PIERS Proceedings, Cambridge, USA, July 2-6 (2008)Google Scholar
  7. 7.
    Lednev, V.V.: Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 12(2), 71–75 (1991)PubMedCrossRefGoogle Scholar
  8. 8.
    Liboff, A.R.: Cyclotron resonance in membrane transport. In: Chiabrera, A., Schwan, H.P. (eds.) Interactions Between Electromagnetic Fields and Cells, pp. 287–296. Plenum Press, London (1985)Google Scholar
  9. 9.
    Lednev, V.V.: Article in Russian. Biofizika 41, 815 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jan Barabas
    • 1
  • Roman Radil
    • 1
  1. 1.Department of Electromagnetic and Biomedical EngineeringUniversity of ZilinaZilinaSlovakia

Personalised recommendations