Multichannel Biomedical Signals Analysis Based on a Split-and-Collect Approach

  • Juliusz L. Kulikowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7339)


It is described a concept of an algorithm of similar sequences of samples detection in groups of long biomedical time-processes. The concept is based on the properties of a similarity measure. The method is based on the operations of splitting the process into sections and/or subsections, assessment the similarities between selected pairs of sections and on collection of similar sections into similarity groups. Calculation costs reduction by selection of jointly admissible pairs of sections of the analyzed process is proposed. A possibility to extend the approach on streaming processes is shortly described. Basic points of the method are illustrated by numerical examples.


biomedical signals processing data similarity similar sequences detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pawlicki, G.: Backgrounds of medical engineering. OW Pol. Warszawskiej, Warsaw (1997) (in Polish: Podstawy inżynierii medycznej)Google Scholar
  2. 2.
    Kozlov, E.A., Gogonenkov, G.N., Lerner, B.L., et al.: Digital processing of seismic data. Nedra, Moscow (1973) (in Russian: Ciffrovaya obrabotka sejsmičeskich dannych)Google Scholar
  3. 3.
    Kurzyński, M.: Objects recognition. Statistical methods. OW Pol. Wrocławskiej, Wroclaw (1997) (in Polish: Rozpoznawanie obiektów. Metody statystyczne)Google Scholar
  4. 4.
    Stąpor, K.: Automatic objects recognition. AOW EXIT, Warsaw (2005)Google Scholar
  5. 5.
    Deonier, R.C., Tavaré, S., Waterman, M.S.: Computational Genome Analysis. An Introduction. Springer, New York (2005)Google Scholar
  6. 6.
    Baxevanis, A.D., Ouellette, B.F.F. (eds.): Bioinformatics. A Practical Guide to Analysis of Genes and Proteins. John Wiley & Sons Inc. (2001)Google Scholar
  7. 7.
    Polanski, A., Kimmel, M.: Bioinformatics. Springer, Berlin (2007)Google Scholar
  8. 8.
    Kulikowski, J.L.: Objects’ Matching Recognition Problem and Its Applications. In: Ramakrishnan, S., El Emary, I.M.M. (eds.) Computational Techniques and Algorithms for Image Processing, pp. 81–105. LAP Lambert Academic Publishing, Saarbrücken (2010)Google Scholar
  9. 9.
    Tung, A.K., Zhang, R., Koudas, N., Ooi, B.C.: Similarity Search: A Matching-based Approach. In: Proc. of VLDB, Seoul, pp. 631–642 (2006)Google Scholar
  10. 10.
    Kontaki, M., Papadopoulos, A.N., Manolopoulos, Y.: Similarity Search in Time Series Databases. In: Rivero, L.C., Doorn, J.H., Ferraggine, V.E. (eds.) Encyclopedia of Database Technologies and Applications, pp. 646–651. Idea Group Reference, Hershey (2006)Google Scholar
  11. 11.
    Anderson, T.W.: The Statistical Analysis of Time Series. John Wiley & Sons, Inc., New York (1971)Google Scholar
  12. 12.
    Vlachos, M., Hatjieleftheriou, M., Gunopoulos, D., Keogh, E.: Indexing Multidimensional Time Series with Support for Multiple Distance Measures. In: Proc. of ACM SIGKDD, Washington, D.C., pp. 216–225 (2003)Google Scholar
  13. 13.
    Goldman, S.: Information Theory. Constable and Co., London (1953)Google Scholar
  14. 14.
    Otnes, R.K., Enochson, L.: Applied Time Series Analysis. John Wiley and Sons, New York (1978)Google Scholar
  15. 15.
    Kulikowski, J.L.: Pattern Recognition Based on Ambiguous Indications of Experts. In: Komputerowe Systemy Rozpoznawania, KOSYR 2001, pp. 15–22. Wyd. Pol. Wrocławskiej, Wroclaw (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Juliusz L. Kulikowski
    • 1
  1. 1.Nalecz Institute of Biocybernetics and Biomedical Engineering PASWarsawPoland

Personalised recommendations