Extracting Multi-document Summaries with a Double Clustering Approach

  • Sara Botelho Silveira
  • António Branco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7337)


This paper presents a method for extractive multi-document summarization that explores a two-phase clustering approach. First, sentences are clustered by similarity, and one sentence per cluster is selected, to reduce redundancy. Then, in order to group them according to topics, those sentences are clustered considering the collection of keywords. Additionally, the summarization process further includes a sentence simplification step, which aims not only to create simpler and more incisive sentences, but also to make room for the inclusion of relevant content in the summary as much as possible.


Multi-document summarization sentence clustering sentence simplification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aleixo, P., Pardo, T.A.S.: Cstnews: Um córpus de textos jornalísticos anotados segundo a teoria discursiva multidocumento cst (cross-document structure theory). Tech. rep., Universidade de São Paulo (2008)Google Scholar
  2. 2.
    Branco, A., Silva, J.: A suite of shallow processing tools for portuguese: Lx-suite. In: Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2006 (2006)Google Scholar
  3. 3.
    Carbonell, J.G., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Research and Development in Information Retrieval, pp. 335–336 (1998)Google Scholar
  4. 4.
    Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)CrossRefGoogle Scholar
  5. 5.
    Edmundson, H.P.: New methods in automatic extracting. J. ACM 16(2), 264–285 (1969)zbMATHCrossRefGoogle Scholar
  6. 6.
    Jaccard, P.: Nouvelles recherches sur la distribution florale. Bulletin de la Sociète Vaudense des Sciences Naturelles 44, 223–270 (1908)Google Scholar
  7. 7.
    Lin, C.Y.: Rouge: A package for automatic evaluation of summaries. In: Marie-Francine Moens, S.S. (ed.) Text Summarization Branches Out: Proceedings of the ACL 2004 Workshop, pp. 74–81. ACL, Barcelona (2004)Google Scholar
  8. 8.
    Lin, C.Y., Hovy, E.: From single to multi-document summarization: A prototype system and its evaluation. In: Proceedings of the ACL, pp. 457–464. MIT Press (2002)Google Scholar
  9. 9.
    Luhn, H.P.: The automatic creation of literature abstracts. IBM Journal of Research and Development 2 (1958)Google Scholar
  10. 10.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press (1967)Google Scholar
  11. 11.
    Mani, I.: Automatic Summarization. Benjamins Pub. Co., Amsterdam (2001)Google Scholar
  12. 12.
    Pardo, T.A.S., Rino, L.H.M., das Graças Volpe Nunes, M.: GistSumm: A Summarization Tool Based on a New Extractive Method. In: Mamede, N.J., Baptista, J., Trancoso, I., Nunes, M.d.G.V. (eds.) PROPOR 2003. LNCS, vol. 2721, pp. 210–218. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Radev, D.R., Jing, H., Budzikowska, M.: Centroid-based summarization of multiple documents: sentence extraction, utility-based evaluation, and user studies. In: Proceedings of the 2000 NAACL-ANLP Workshop on Automatic Summarization, NAACL-ANLP-AutoSum 2000, pp. 21–30. ACL (2000)Google Scholar
  14. 14.
    Silva, J., Branco, A., Castro, S., Reis, R.: Out-of-the-Box Robust Parsing of Portuguese. In: Pardo, T.A.S., Branco, A., Klautau, A., Vieira, R., de Lima, V.L.S. (eds.) PROPOR 2010. LNCS, vol. 6001, pp. 75–85. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    White, M., Korelsky, T., Cardie, C., Ng, V., Pierce, D., Wagstaff, K.: Multidocument summarization via information extraction. In: HLT 2001: Proceedings of the First International Conference on Human Language Technology Research, pp. 1–7 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sara Botelho Silveira
    • 1
    • 2
  • António Branco
    • 1
    • 2
  1. 1.University of LisbonPortugal
  2. 2.Edifício C6, Departamento de Informática Faculdade de CiênciasUniversidade de Lisboa Campo GrandeLisboaPortugal

Personalised recommendations