Advertisement

Labeling Queries for a People Search Engine

  • Antje Schlaf
  • Amit Kirschenbaum
  • Robert Remus
  • Thomas Efer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7337)

Abstract

We present methods for labeling queries for a specialized search engine: a people search engine. Thereby, we propose several methods of different complexity from simple probabilistic ones to Conditional Random Fields. All methods are then evaluated on a manually annotated corpus of queries submitted to a people search engine. Additionally, we analyze this corpus with respect to typical search patterns and their distribution.

Keywords

query labeling people search conditional random fields 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allan, J., Raghavan, H.: Using Part-of-speech Patterns to Reduce Query Ambiguity. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 307–314 (2002)Google Scholar
  2. 2.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: A Nucleus for a Web of Open Data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Barr, C., Jones, R., Regelson, M.: The Linguistic Structure of English Web-search Queries. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1021–1030 (2008)Google Scholar
  4. 4.
    Bottou, L.: Stochastic Learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) Machine Learning 2003. LNCS (LNAI), vol. 3176, pp. 146–168. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Byrd, R., Lu, P., Nocedal, J., Zhu, C.: A Limited Memory Algorithm for Bound Constrained Optimization. SIAM Journal on Scientific Computing 16(5), 1190–1208 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Jansen, B., Booth, D.: Classifying Web Queries by Topic and User Intent. In: Proceedings of the 28th International Conference on Human Factors in Computing Systems (CHI), pp. 4285–4290 (2010)Google Scholar
  7. 7.
    Lafferty, J., McCallum, A., Pereira, F.C.: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In: Proceedings of the 18th International Conference on Machine Learning (ICML), pp. 282–289 (2001)Google Scholar
  8. 8.
    Li, X., Wang, Y.Y., Acero, A.: Extracting Structured Information from User Queries with Semi-supervised Conditional Random Fields. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 572–579 (2009)Google Scholar
  9. 9.
    Manshadi, M., Li, X.: Semantic Tagging of Web Search Queries. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing (ACL/IJNLP), pp. 861–869 (2009)Google Scholar
  10. 10.
    Martins, B., Silva, M.J.: Spelling Correction for Search Engine Queries. In: Vicedo, J.L., Martínez-Barco, P., Muńoz, R., Saiz Noeda, M. (eds.) EsTAL 2004. LNCS (LNAI), vol. 3230, pp. 372–383. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    McCallum, A.K.: Mallet: A machine learning for language toolkit (2002), http://mallet.cs.umass.edu
  12. 12.
    Paşca, M.: Weakly-supervised Discovery of Named Entities using Web Search Queries. In: Proceedings of the 16th Conference on Information and Knowledge Management (CIKM), pp. 683–690 (2007)Google Scholar
  13. 13.
    Schlaf, A., Remus, R.: Learning Categories and their Instances by Contextual Features. In: Proceedings of the 8th International Conference on Language Resources and Evaluation, LREC (2012)Google Scholar
  14. 14.
    Silverstein, C., Henzinger, M., Marais, H., Moricz, M.: Analysis of a very large AltaVista Query Log. Tech. rep., Technical Report 1998-014, Digital SRC (1998)Google Scholar
  15. 15.
    Spink, A., Wolfram, D., Jansen, M., Saracevic, T.: Searching the Web: The Public and their Queries. Journal of the American Society for Information Science and Technology 52(3), 226–234 (2001)CrossRefGoogle Scholar
  16. 16.
    Sutton, C., McCallum, A.: An Introduction to Conditional Random Fields for Relational Learning, ch. 4, pp. 93–128. MIT Press (2006)Google Scholar
  17. 17.
    Wang, Y., Hoffmann, R., Li, X., Szymanski, J.: Semi-supervised Learning of Semantic Classes for Query Understanding: from the Web and for the Web. In: Proceeding of the 18th ACM Conference on Information and Knowledge Management (CIKM), pp. 37–46 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Antje Schlaf
    • 1
  • Amit Kirschenbaum
    • 1
  • Robert Remus
    • 1
  • Thomas Efer
    • 1
  1. 1.Abteilung Automatische SprachverarbeitungInstitut für Informatik, Universität LeipzigLeipzigGermany

Personalised recommendations