Lexical Knowledge Acquisition Using Spontaneous Descriptions in Texts

  • Augusta Mela
  • Mathieu Roche
  • Mohamed El Amine Bekhtaoui
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7337)


This paper focuses on the extraction of lexical knowledge from text by exploiting the “glosses” of words, i.e. spontaneous descriptions identifiable by lexical markers and specific morpho-syntactic patterns. This information offers interesting knowledge in order to build dictionaries. In this study based on the RESENS project, we compare two methods to extract this linguistic information using local grammars and/or web-mining approaches. Experiments have been conducted on real data in French.


Nominal Phrase Local Pattern Ranking Function Lexical Knowledge Nominal Phrase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Muresan, S., Klavans, J.: A method for automatically building and evaluating dictionary resources. In: Proceedings of LREC (2002)Google Scholar
  2. 2.
    Nazarenko, A., Hamon, T.: Structuration de terminologie: quels outils pour quelles pratiques? TAL 43-1, 7–18 (2002)Google Scholar
  3. 3.
    Daladier, A.: Les grammaires de harris et leurs questions. Languages (99) (1990)Google Scholar
  4. 4.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. In: Proc. of ACM, vol. 18, pp. 613–620 (1975)Google Scholar
  5. 5.
    Aussenac-Gilles, N., Jacques, M.P.: Designing and Evaluating Patterns for Relation Acquisition from Texts with CAMELEON. Terminology, Pattern-Based Approaches to Semantic Relations 14(1), 45–73 (2008)Google Scholar
  6. 6.
    Steuckardt, A.: Du discours au lexique: la glose. Séminaire ATILF (2006)Google Scholar
  7. 7.
    Daille, B.: Study and implementation of combined techniques for automatic extraction of terminology. In: The Balancing Act: Combining Symbolic and Statistical Approaches to Language, pp. 49–66 (1996)Google Scholar
  8. 8.
    Ferri, C., Flach, P., Hernandez-Orallo, J.: Learning decision trees using the area under the ROC curve. In: Proceedings of ICML, pp. 139–146 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Augusta Mela
    • 1
  • Mathieu Roche
    • 2
  • Mohamed El Amine Bekhtaoui
    • 3
  1. 1.Univ. Montpellier 3France
  2. 2.LIRMM – CNRSUniv. Montpellier 2France
  3. 3.Univ. Montpellier 2France

Personalised recommendations