Automatic Population of Korean Information in Linking Open Data

  • Shin-Jae Kang
  • In-Su Kang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7337)


This paper presents an automatic populating method which adds non-English factual information into Linking Open Data (LOD). Unlike previous approaches, we extract semantic data from non-structured information, i.e. sentences, and use WordNet to link resources in the semantic data to the ones in DBpedia. The techniques of cross-lingual link discovery and hedge detection are used to select factual information to be added into LOD.


Hedge Detection Cross-lingual Link Discovery Linking Open Data QA System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Niu, X., Sun, X., Wang, H., Rong, S., Qi, G., Yu, Y.: - Weaving Chinese Linking Open Data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part II. LNCS, vol. 7032, pp. 205–220. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Choi, K.-S., Kim, E.-K., Choi, D.-H.: Multilingual Linking Open Data. In: Proceedings of the 3rd European Language Resources and Technologies Forum, Venezia, Italy (2011)Google Scholar
  3. 3.
    Herzig, D., Taneva, H.: Multilingual expert search using linked open data as interlingual representation. Notebook Papers of the CLEF 2010 Labs and Workshops, Padua, Italy (2010)Google Scholar
  4. 4.
    Tang, L.X., Geva, S., Trotman, A., Xu, Y., Itakura, K.: Overview of the NTCIR-9 Crosslink Task: Cross-lingual Link Discovery. In: Proceedings of the 9th NTCIR Workshop, Tokyo, Japan, pp. 437–463 (2011)Google Scholar
  5. 5.
    Kang, S.J.: Cross-lingual Link Discovery by Using Link Probability and Bilingual Dictionary. In: Proceedings of the 9th NTCIR Workshop, Tokyo, Japan, pp. 484–486 (2011)Google Scholar
  6. 6.
    Hyland, K.: Persuasion, interaction and the construction of knowledge: representing self and others in research writing. International Journal of English Studies 8(2), 8–18 (2008)Google Scholar
  7. 7.
    Kang, S.-J., Kang, I.-S., Na, S.-H.: A Comparison of Classifiers for Detecting Hedges. In: Kim, T.-h., Gelogo, Y. (eds.) UNESST 2011. CCIS, vol. 264, pp. 251–257. Springer, Heidelberg (2011)Google Scholar
  8. 8.
    Hwang, W.H., Kang, S.J.: Automatic semantic annotation of web documents by SVM machine learning. Journal of Korea Industrial Information Systems Society 12(2), 49–59 (2007) (in Korean) Google Scholar
  9. 9.
    Kang, S.J., Kang, I.S.: Generalization of Ontology Instances Based on WordNet and Google. Journal of Korean Institute of Intelligent Systems 19(3), 363–370 (2009) (in Korean) CrossRefGoogle Scholar
  10. 10.
    Allemang, D., Hendler, J.: Semantic Web for the Working Ontologist. Elsevier (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shin-Jae Kang
    • 1
  • In-Su Kang
    • 2
  1. 1.School of Computer and Information TechnologyDaegu UniversityGyeonsanSouth Korea
  2. 2.School of Computer Science & EngineeringKyungsung UniversityPusanSouth Korea

Personalised recommendations