PIRPO: An Algorithm to Deal with Polarity in Portuguese Online Reviews from the Accommodation Sector

  • Marcirio Silveira Chaves
  • Larissa A. de Freitas
  • Marlo Souza
  • Renata Vieira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7337)


This paper presents the algorithm Polarity Recognizer in Portuguese (PIRPO) to classify sentiment in online reviews. PIRPO was constructed to identify polarity in Portuguese user generated accommodation reviews. Each review is analysed according to concepts from a domain ontology. We decompose the review in sentences in order to assign a polarity to each concept of the ontology in the sentence. Preliminary results indicate an average F-score of 0.32 for polarity recognition.


Portuguese Online Reviews Portuguese Sentiment Analysis Portuguese Opinion Mining Accommodation Sector 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chaves, M.S., Trojahn, C.: Towards a multilingual ontology for ontology-driven content mining in social web sites. In: 1st International Workshop on Cross-Cultural and Cross-Lingual Aspects of the Semantic Web (ISWC 2010), Shanghai, China (2010)Google Scholar
  2. 2.
    Chaves, M.S., Gomes, R., Pedron, C.: Analysing reviews in the Web 2.0: Small and Medium Hotels in Portugal. Tourism Management (2011)Google Scholar
  3. 3.
    Chaves, M. S., Gomes, R. e Pedron, C.: Decision-making based on Online Reviews: The Small and Medium Hotel Management. In: 20th European Conference on Information Systems, Barcelona, Spain, June 10-13 (to appear, 2012)Google Scholar
  4. 4.
    Chesley, P., Vincent, B., Xu, L., Srihari, R.: Using verbs and adjectives to automatically classify blog sentiment. In: AAAI Symposium on Computational Approaches to Analysing Weblogs (AAAI-CAAW), pp. 27–29 (2006)Google Scholar
  5. 5.
    Ding, X., Liu, B., Yu, P.S.: A holistic lexicon-based approach to opinion mining. In: Proceedings of First ACM International Conference on Web Search and Data Mining, WSDM 2008 (2008)Google Scholar
  6. 6.
    Kar, A., Mandal, D.P.: Finding opinion strength using fuzzy logic on web reviews. International Journal of Engineering and Industries 2(1) (2011)Google Scholar
  7. 7.
    Liu, B.: Sentiment analysis and subjectivity, 2nd edn. Handbook of Natural Language Processing (2010)Google Scholar
  8. 8.
    Souza, M., Vieira, R., Busetti, D., Chishman, R., Alves, I.M.: Construction of a Portuguese opinion lexicon from multiple resources. In: The 8th Brazilian Symposium in Information and Human Language Technology (STIL 2011), Cuiabá, Brazil (2011)Google Scholar
  9. 9.
    Taboada, M., Brooke, J., Tofiloski, M., Voll, K.D., Stede, M.: Lexicon-based methods for sentiment analysis. Computational Linguistics 37(2), 267–307 (2011)CrossRefGoogle Scholar
  10. 10.
    Tang, H., Tan, S., Cheng, X.: A survey on sentiment detection of reviews. Expert Systems with Applications 36(7), 10760–10773 (2009)CrossRefGoogle Scholar
  11. 11.
    Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A.: Sentiment in short strength detection informal text. JASIST 61(12), 2544–2558 (2010)CrossRefGoogle Scholar
  12. 12.
    Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity: An exploration of features for phrase-level sentiment analysis. Computational Linguistics 35, 399–433 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marcirio Silveira Chaves
    • 1
  • Larissa A. de Freitas
    • 2
  • Marlo Souza
    • 2
  • Renata Vieira
    • 2
  1. 1.Business and Information Technology Research Center (BITREC)Universidade AtlânticaOeirasPortugal
  2. 2.Faculdade de InformáticaPontifícia Universidade Católica do Rio Grande do SulPortoBrazil

Personalised recommendations