Advertisement

Comparing Different Methods for Opinion Mining in Newspaper Articles

  • Thomas Scholz
  • Stefan Conrad
  • Isabel Wolters
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7337)

Abstract

Adapting opinion mining for news articles is a challenging field and at the same time it is very interesting for many analyses, applications and systems in the field of media monitoring. In this paper, we illustrate specifics in this area in comparison with sentiment analysis of product reviews. Likewise, we introduce new methods for the determination of the sentiment polarity in statements, which are extracted from news articles. Our evaluation on a real world data set of a German Media Response Analysis (MRA) shows that these methods perform better than existing approaches and resources.

Keywords

Opinion Mining Sentiment Score Media Response Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balahur, A., Steinberger, R., Kabadjov, M., Zavarella, V., van der Goot, E., Halkia, M., Pouliquen, B., Belyaeva, J.: Sentiment analysis in the news. In: Proc. of the 7th Intl. Conf. on Language Resources and Evaluation, LREC 2010 (2010)Google Scholar
  2. 2.
    Bollegala, D., Weir, D., Carroll, J.: Using multiple sources to construct a sentiment sensitive thesaurus for cross-domain sentiment classification. In: Proc. of the 49th Annu. Mtg. of the ACL: Human Language Technologies, HLT 2011, vol. 1, pp. 132–141 (2011)Google Scholar
  3. 3.
    Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography. In: Proc. of the 27th Annu. Mtg. on ACL, ACL 1989, pp. 76–83 (1989)Google Scholar
  4. 4.
    Harb, A., Plantié, M., Dray, G., Roche, M., Trousset, F., Poncelet, P.: Web opinion mining: how to extract opinions from blogs? In: Proc. of the 5th Intl. Conf. on Soft Computing as Transdisciplinary Science and Technology, CSTST 2008, pp. 211–217 (2008)Google Scholar
  5. 5.
    Jaccard, P.: Etude comparative de la distribution orale dans une portion des alpes et des jura. Bulletin del la Socit Vaudoise des Sciences Naturelles 37, 547–579 (1901)Google Scholar
  6. 6.
    Kaji, N., Kitsuregawa, M.: Building lexicon for sentiment analysis from massive collection of html documents. In: Proc. of the 2007 Joint Conf. on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL 2007 (2007)Google Scholar
  7. 7.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval 2(1-2), 1–135 (2008)CrossRefGoogle Scholar
  8. 8.
    Park, S., Lee, K., Song, J.: Contrasting opposing views of news articles on contentious issues. In: Proc. of the 49th Annu. Mtg. of the ACL: Human Language Technologies, HLT 2011, vol. 1, pp. 340–349 (2011)Google Scholar
  9. 9.
    Remus, R., Quasthoff, U., Heyer, G.: SentiWS – a publicly available german-language resource for sentiment analysis. In: Proc. of the 7th Intl. Conf. on Language Resources and Evaluation, LREC 2010 (2010)Google Scholar
  10. 10.
    Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423 (1948)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Watson, T., Noble, P.: Evaluating public relations: a best practice guide to public relations planning, research & evaluation. PR in practice series. Kogan Page (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas Scholz
    • 1
  • Stefan Conrad
    • 1
  • Isabel Wolters
    • 2
  1. 1.Institute of Computer ScienceHeinrich-Heine-UniversityDüsseldorfGermany
  2. 2.Development DepartmentpressrelationsDüsseldorfGermany

Personalised recommendations