Performing Groupization in Data Warehouses: Which Discriminating Criterion to Select?

  • Eya Ben Ahmed
  • Ahlem Nabli
  • Faïez Gargouri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7337)


In this paper, we aim to optimally identify the analyst’groups in data warehouse. For that reason, we study the similarity between the selected queries in the analytical history. Four axis for group identification are distinguished: (i) the function exerted, (ii) the granted responsibilities to accomplish goals, (iii) the source of groups identification, (iv) the dynamicity of discovered groups. A semi-supervised hierarchical algorithm is used to discover the most discriminating criterion. Carried out experiments on real data warehouse demonstrate that groupization improves upon personalization for several group types, mainly for function-based groupization.


personalization groupization semi-supervised hierarchical clustering OLAP log files data warehouse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aligon, J., Golfarelli, M., Marcel, P., Rizzi, S., Turricchia, E.: Mining Preferences from OLAP Query Logs for Proactive Personalization. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 84–97. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Bellatreche, L., Giacometti, A., Marcel, P., Mouloudi, H., Laurent, D.: A personalization framework for OLAP queries. In: International Workshop on Data Warehousing and OLAP (DOLAP 2005), pp. 9–18 (2005)Google Scholar
  3. 3.
    Ben Ahmed, E., Nabli, A., Gargouri, F.: A Survey of User-Centric Data Warehouses: From Personalization to Recommendation. The International Journal of Database Management Systems (IJDMS) 3(2), 59–71 (2011)CrossRefGoogle Scholar
  4. 4.
    Ben Ahmed, E., Nabli, A., Gargouri, F.: Building MultiView Analyst Profile From Multidimensional Query Logs: From Consensual to Conflicting Preferences. The International Journal of Computer Science Issues (IJCSI) 9(1) (to appear, January 2012) Google Scholar
  5. 5.
    Favre, C., Bentayed, F., Boussaid, O.: Evolution et personnalisation des analyses dans les entrepts de donnes: une approche oriente utilisateur. In: XXVme Congrs Informatique des Organisations et Systmes d’information et de Dcision, INFORSID 2007, Perros-Guirec, pp. 308–323 (2007)Google Scholar
  6. 6.
    Giacometti, A., Marcel, P., Negre, E.: A Framework for Recommending OLAP Queries. In: ACM Eleventh International Workshop on Data Warehousing and OLAP (DOLAP 2008), California, US, pp. 307–314 (2008)Google Scholar
  7. 7.
    Jerbi, H., Ravat, F., Teste, O., Zurfluh, G.: Applying Recommendation Technology in OLAP Systems. In: Filipe, J., Cordeiro, J. (eds.) ICEIS 2009. LNBIP, vol. 24, pp. 220–233. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Klein, D., Kamvar, S.D., Manning, C.D.: From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering. In: Proceedings of the 19th International Conference on Machine Learning (ICML 2002), CA, USA, pp. 307–314 (2002) Google Scholar
  9. 9.
    MacQueen, J.: Some Methods for Classification and Analysis of Multivariate Observations. In: 5th Berkeley Symp. Math. Statist. Prob. (1967)Google Scholar
  10. 10.
    Morris, M.R., Teevan, J.: Understanding Groups’ Properties as a Means of Improving Collaborative Search Systems. In: 8th Workshop on Collaborative Information Retrieval, JCDL 2008, Pittsburgh, USA (2008)Google Scholar
  11. 11.
    Provost, F., Fawcett, T., Kohavi, R.: The case against accuracy estimation for comparing induction algorithms. In: Proceeding of the 50th International Conference on Machine Learning, Madison, Wisconsin USA, pp. 445–453 (1998)Google Scholar
  12. 12.
    Quinlan, J.R.: Induction of decision trees. Machine Learning, 81–106 (1986)Google Scholar
  13. 13.
    Ravat, F., Teste, O.: Personalization and OLAP Databases. Annals of Information Systems. New Trends in Data Warehousing and Data Analysis 3, 71–92 (2008)Google Scholar
  14. 14.
    Rizzi, S.: New Frontiers in Business Intelligence: Distribution and Personalization. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295, pp. 23–30. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Teevan, J., Morris, M.R., Bush, S.: Discovering and Using Groups to Improve Personalized Search. In: Proceedings of Web Search and Data Mining, WSDM (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eya Ben Ahmed
    • 1
  • Ahlem Nabli
    • 1
  • Faïez Gargouri
    • 1
  1. 1.Sfax UniversityTunisia

Personalised recommendations