MLICC: A Multi-Label and Incremental Centroid-Based Classification of Web Pages by Genre

  • Chaker Jebari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7337)


This paper proposes an improved centroid-based approach to classify web pages by genre using character n-grams extracted from URL, title, headings and anchors. To deal with the complexity of web pages and the rapid evolution of web genres, our approach implements a multi-label and incremental scheme in which web pages are classified one by one and can be affected to more than one genre. According to the similarity between the new page and each genre centroid, our approach either adjust the genre centroid or considers the new page as noise page and discards it. Conducted experiments show that our approach is very fast and achieves superior results over existing multi-label classifiers.


Multi-label Incremental Centroid genre classification character n-grams 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Han, E.-H(S.), Karypis, G.: Centroid-Based Document Classification: Analysis and Experimental Results. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 424–431. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. Godbole, S., Sarawagi, S.: Discriminative Methods for Multi-labeled Classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. Read, J., Pfahringer, B., Holmes, G.: Multi-label Classification Using Ensembles of Pruned Sets. In: 8th IEEE International Conference on Data Mining (2008)Google Scholar
  4. Salton, G.: Automatic Text Processing: The Transformation Analysis and Retrieval of Information by Computer. Addison-Wesley (1989)Google Scholar
  5. Santini, M.: Automatic Identification of Genr. Web Pages. PhD thesis, University of Brighton, UK (2007)Google Scholar
  6. Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing Surveys 34(1), 1–47 (2002)CrossRefGoogle Scholar
  7. Shepherd, M., Watters, C.: Evolution of Cybergenre. In: 31 Hawaiian International Conference on System Sceinces (1998)Google Scholar
  8. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International Journal of Data Warehousing and Mining 3(3), 1–13 (2007)CrossRefGoogle Scholar
  9. Vedrana, V., Mitja, L., Matjaž, G.: Multi-Label Approaches to Web Genre Identification. Journal of Language and Computational Linguistics 24(1), 97–114 (2009)Google Scholar
  10. Vidulin, V., Luštrek, M., Gams, M.: Using Genres to Improve Search Engines. In: 1st International Workshop: Towards Genre-Enabled Search Engines: The Impact of Natural Language Processing, Borovest, Bulgaria, pp. 45–51 (2007)Google Scholar
  11. Zhang, M., Zhou, Z.: A K-Nearest Neighbor based Algorithm for Multi-label Classification. In: 1st IEEE International Conference on GrC, China (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chaker Jebari
    • 1
  1. 1.Ibri College of Applied SciencesSultanate of OmanOman

Personalised recommendations