Skip to main content

Metallic Biodegradable Coronary Stent: Materials Development

  • Chapter
  • First Online:
  • 1518 Accesses

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

By taking 316L stainless steel as reference for mechanical and physical properties, a series of iron-manganese alloys was developed. Four alloys with manganese content ranging from 20 to 35wt% were prepared. Their microstructure, mechanical and physical properties were carefully investigated. Results show that the developed alloys possess mechanical and physical properties suitable for the development of biodegradable coronary stents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bliznuk VV, Glavatska NI, Soderberg O, Lindroos VK (2002) Effect of nitrogen on damping, mechanical and corrosive properties of Fe-Mn alloys. Mater Sci Eng A 338:213–218

    Article  Google Scholar 

  • Boffetta P (1993) Carcinogenicity of trace elements with reference to evaluations made by the International Agency for Research on cancer. Scand J Work Environ Health 19(Suppl 1):67–70

    CAS  Google Scholar 

  • Bogachev IN, Yegolayev VF, Zvigintseva GY, Zhuravel LV (1969) Effect of alloying on austenite imperfection and tendency of an Fe-Mn alloy to γ–ε transformation. Phys Met Metallogr 28:125–130

    Google Scholar 

  • Bogachev IN, Yegolayev VF, Frolova TL (1972) Features of the strengthening of austenitic iron-manganese alloys. Phys Met Metallogr 33:127–132

    Google Scholar 

  • Cotes SM, Guillermet AF, Sade M (2004) FCC–HCP martensitic transformation in the Fe-Mn system: Part II. Driving force and thermodynamic of the nucleation process. Metall Mater Trans A 35:83–91

    Article  Google Scholar 

  • Crossgrove J, Zheng W (2004) Manganese toxicity upon overexposure. NMR Biomed 17:544–553

    Article  CAS  Google Scholar 

  • Deevi SC (2000) Powder processing of FeAl sheets by roll compaction. Intermetallics 8:679–685

    Article  CAS  Google Scholar 

  • Gartstein E, Rabinkin A (1979) On the FCC–HCP phase transformation in high manganese-iron alloys. Acta Metall 27:1053–1064

    Article  CAS  Google Scholar 

  • Gauzzi F, Verdini B, Principi G, Badan B (1983) The martensitic transformation in cold-worked Fe-Mn alloys studied by Mossbauer spectroscopy. J Mater Sci 18:3661–3670

    Article  CAS  Google Scholar 

  • Hansen M (1958) Constitution of binary alloys. McGraw-Hill, Toronto

    Google Scholar 

  • Hermawan H, Dube D, Mantovani D (2007) Development of degradable Fe-35Mn alloy for biomedical application. Adv Mater Res 15–17:107–112

    Article  Google Scholar 

  • Hermawan H, Alamdari H, Mantovani D, Dubé D (2008) Iron-manganese: new class of degradable metallic biomaterials prepared by powder metallurgy. Powder Metall 51:38–45

    Article  CAS  Google Scholar 

  • Hermawan H, Dube D, Mantovani D (2010) Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. J Biomed Mater Res A 93:11

    Google Scholar 

  • Huang W (1989) An assessment of the Fe-Mn system. Calphad 13:243–252

    Article  CAS  Google Scholar 

  • Ishikawa Y, Endoh Y (1968) Antiferromagnetism of γ-FeMn alloys. J Appl Phys 39:1318–1319

    Article  CAS  Google Scholar 

  • Jynge P, Brurok H, Asplund A, Towart R, Refsum H, Karlsson JO (1997) Cardiovascular safety of MnDPDP and MnCl2. Acta Radiol 38:740–749

    CAS  Google Scholar 

  • Keen CL, Ensunsa JL, Clegg MS (2000) Manganese metabolism in animals and humans including the toxicity of manganese. In: Siegel A, Siegel H (eds) Manganese and its role in biological processes. Marcel Dekker, New York, pp 89–121

    Google Scholar 

  • Lee Y-K, Jun J-H, Choi C-S (1997) Damping capacity in Fe-Mn binary alloys. ISIJ Int 37:1023–1030

    Article  CAS  Google Scholar 

  • Liu B, Zheng YF (2011) Effects of alloying elements (Mn, Co., Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater 7:1407–1420

    Article  CAS  Google Scholar 

  • Liu B, Zheng YF, Ruan L (2011) In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater Lett 65:540–543

    Article  CAS  Google Scholar 

  • Martinez J, Cotes SM, Cabrera AF, Desimoni J, Fernandez Guillermet A (2005) On the relative fraction of epsilon-martensite in gamma-austenite Fe-Mn alloys. Mater Sci Eng A 408:26–32

    Google Scholar 

  • McGregor DB, Baan RA, Partensky C, Rice JM, Wilbourn JD (2000) Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodies—a report of an IARC Monographs Programme Meeting. Eur J Cancer 36:307–313

    Article  CAS  Google Scholar 

  • Meszaros I, Prohaszka J (2005) Magnetic investigation of the effect of α’-martensite on the properties of austenitic stainless steel. J Mater Proc Technol 161:162–168

    Article  CAS  Google Scholar 

  • Moravej M, Prima F, Fiset M, Mantovani D (2010) Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship. Acta Biomater 6:1726–1735

    Article  CAS  Google Scholar 

  • Mumtaz K, Takahashi S, Echigoya J, Kamada Y, Zhang LF, Kikuchi H, Ara K, Sato M (2004) Magnetic measurements of martensitic transformation in austenitic stainless steel after room temperature rolling. J Mater Sci 39:85–97

    Article  CAS  Google Scholar 

  • Nie FL, Zheng YF, Wei SC, Hu C, Yang G (2010) In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron. Biomed Mater 5:065015

    Article  CAS  Google Scholar 

  • Nishiyama Z, Shimizu K (1961) Study of sub-structures of the martensite in Fe-Ni alloy by means of transmission electron microscope. Acta Metall 9:980–981

    Article  CAS  Google Scholar 

  • Olson GB, Cohen M (1975) Kinetics of strain-induced martensitic nucleation. Metall Trans A 6:791–795

    Article  Google Scholar 

  • Rabinkin A (1979) On magnetic contributions to γ–ε phase transformations in Fe-Mn alloys. Calphad 3:77–84

    Article  CAS  Google Scholar 

  • Schinhammer M, Hänzi AC, Löffler JF, Uggowitzer PJ (2010) Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater 6:1705–1713

    Article  CAS  Google Scholar 

  • Schomig A, Kastrati A, Mudra H, Blasini R, Schuhlen H, Klauss V, Richardt G, Neumann FJ (1994) Four-year experience with Palmaz-Schatz stenting in coronary angioplasty complicated by dissection with threatened or present vessel closure. Circulation 90:2716–2724

    Article  CAS  Google Scholar 

  • Schumann H (1975) The influence of mechanical stresses on the microstructures of alloys undergoing the martensitic transformation. Pract Metallogr 12:511–525

    CAS  Google Scholar 

  • Serruys PW, Kutryk MJ, Ong AT (2006) Coronary-artery stents. N Engl J Med 354:483–495

    Article  CAS  Google Scholar 

  • Strudel J-L (1996) Mechanical properties of multiphase alloys. In: Cahn RW (ed) Physical metallurgy, vol III. North-Holland, Amsterdam

    Google Scholar 

  • Trichter F, Rabinkin A, Ron M, Sharfstein A (1978) A study of gamma-epsilon phase transformation in Fe-Mn alloys induced by high pressure and plastic deformation. Scr Metall 12:431–434

    Article  CAS  Google Scholar 

  • Volynova TF (1984) Nickel-free iron-manganese alloys. Met Sci Heat Treat 26:476–482

    Article  Google Scholar 

  • Volynova TF, Emelyanova IZ, Sidorova IB (1992) Features of structure formation in Fe-Mn powder alloys during deformation and recrystallization. III. Effect of structure formation and recrystallization on alloy mechanical properties. Powder Metall Met Ceram 31:570–574

    Article  Google Scholar 

  • Xu WL, Lu X, Tan LL, Yang K (2011) Study on properties of a novel biodegradable Fe-30Mn-1C alloy. Acta Metall Sinica 47:1342–1347

    CAS  Google Scholar 

  • Zvigintseva GY, Bogachev IN, Yegolayev VF (1970) Effect of carbon and silicon on the work hardening of the iron-manganese alloy G20. Phys Met Metallogr 30:61–67

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendra Hermawan .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Hermawan, H. (2012). Metallic Biodegradable Coronary Stent: Materials Development. In: Biodegradable Metals. SpringerBriefs in Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31170-3_4

Download citation

Publish with us

Policies and ethics