Advertisement

Sampling Techniques for Monte Carlo Matrix Multiplication with Applications to Image Processing

  • Humberto Madrid
  • Valia Guerra
  • Marielba Rojas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7329)

Abstract

Randomized algorithms for processing massive data sets have shown to be a promising alternative to deterministic techniques. Sampling strategies are an essential aspect of randomized algorithms for matrix computations. In this work, we show that strategies that are effective or even optimal in the general case, can fail when applied to ill-conditioned matrices. Our experimental study suggests that there exists a relationship between sampling performance and conditioning of the matrices involved. We present an explanation for this behavior and propose a novel, efficient, and accurate sampling strategy for randomized multiplication of affinity matrices in image segmentation.

Keywords

randomized algorithms massive data sets image segmentation Normalized Cuts 

References

  1. 1.
    Carasso, A.: Determining surface temperatures from interior observations. SIAM J. Appl. Math. 42, 558–574 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Cour, T., Yu, S., Shi, J.: Normalized Cuts Segmentation Code, Copyright University of Pennsylvania, Computer and Information Science Department (2004), http://www.seas.upenn.edu/~timothee/software/ncut/ncut.html
  3. 3.
    Drineas, P., Kannan, R., Mahoney, M.W.: Fast Monte Carlo algorithms for matrices I: approximating matrix multiplication. SIAM J. Comput. 36, 132–157 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Drineas, P., Kannan, R., Mahoney, M.W.: Fast Monte Carlo algorithms for matrices II: computing a low-rank approximation to a matrix. SIAM J. Comput. 36, 158–183 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Drineas, P., Kannan, R., Mahoney, M.W.: Fast Monte Carlo algorithms for matrices III: computing a compressed approximate matrix decomposition. SIAM J. Comput. 36, 184–206 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Eriksson-Bique, S., Solbrig, M., Stefanelli, M., Warkentin, S., Abbey, R., Ipsen, I.C.F.: Importance sampling for a Monte Carlo matrix multiplication algorithm, with application to information retrieval. SIAM J. Sci. Comput. 33, 1689–1706 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the Nyström method. IEEE T. Pattern Anal. 26, 214–225 (2004)CrossRefGoogle Scholar
  8. 8.
    Friedland, S., Mehrmann, V., Miedlar, A., Nkengla, M.: Fast low rank approximations of matrices and tensors. Electron. J. Linear Al. 22, 1031–1048 (2011)MathSciNetGoogle Scholar
  9. 9.
    Hansen, P.C.: Regularization Tools Version 4.0 for Matlab 7.3. Numer. Algo. 46, 189–194 (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Kumar, S., Mohri, M., Talwalkar, A.: Sampling Techniques for the Nyström Method. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, AISTATS (2009)Google Scholar
  11. 11.
    Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK User’s Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1998)zbMATHGoogle Scholar
  12. 12.
    Liberty, E., Zucker, S.W.: The Mailman algorithm: A note on matrix-vector multiplication. Inform. Process. Lett. 109, 179–182 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE T. Pattern Anal. 22, 888–905 (2000)CrossRefGoogle Scholar
  14. 14.
    Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. A. 13, 357–385 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Woolfe, F., Liberty, E., Rokhlin, V., Tygert, M.: A fast randomized algorithm for the approximation of matrices. Appl. Comput. Harmon. Anal. 25, 335–366 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Humberto Madrid
    • 1
  • Valia Guerra
    • 2
  • Marielba Rojas
    • 3
  1. 1.Center for Applied Mathematics Research (CIMA)SaltilloMexico
  2. 2.Institute of Cybernetics, Mathematics and Physics (ICIMAF)HavanaCuba
  3. 3.Delft University of TechnologyThe Netherlands

Personalised recommendations