Phonetic Unification of Multiple Accents for Spanish and Arabic Languages

  • Saad Tanveer
  • Aslam Muhammad
  • A. M. Martinez-Enriquez
  • G. Escalada-Imaz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7329)

Abstract

Languages like Spanish and Arabic are spoken over a large geographic area. The people that speak these languages develop differences in accent, annotation and phonetic delivery. This leads to difficulty in standardization of languages for education and communication (both text and oral). The problem is addressed by phonetic dictionaries to some extent. They provide the correct pronunciation for a word. But, they contribute little to standardize or unify the language for a learner. Our system is to provide unification of different accents and dialects. It creates a standard for learning and communication.

Keywords

Accent unification Spanish MFCC Voice content matching Pattern matching 

References

  1. 1.
  2. 2.
  3. 3.
    Ali, M., Elshafei, M., Al-Ghamdi, M., Al-Muhtaseb, H., Al-Najjar, A.: Generation of Arabic Phonetic Dictionaries for Speech Recognition. In: International Conference on Innovations in Information Technology (IIT), Al Ain, United Arab Emirates, p. 59 (2008)Google Scholar
  4. 4.
    Zhou, W., Yuan, B., Miao, Z., Tang, X.: Error correction via phonetic similarity-based processing for Chinese spoken dialogue system. In: Proceedings of the 8th International Conference on Signal Processing (ICSP), Beijing, China (2006)Google Scholar
  5. 5.
    Muhammad, W.M., Muhammad, R., Muhammad, A., Martinez-Enriquez, A.M.: Voice Content Matching System for Quran Readers. In: Proceedings of ninth Mexican International Conference on Artificial Intelligence, MICAI, Pachuca, Mexico, pp. 148–153 (2010)Google Scholar
  6. 6.
    Malhotra, K., Khosla, A.: Automatic Identification Of gender and Accent in spoken Hindi Utterances with regional Indian accents. In: Proceeding of Spoken Language Technology Workshop, SLT IEEE 2008, Goa, India, pp. 309–312 (2008)Google Scholar
  7. 7.
    Schultz, T., Waibel, A.: Language Independent and Language adaptive acoustic modeling for speech recognition. Speech Communication 35(1-2), 31–51 (2001)MATHCrossRefGoogle Scholar
  8. 8.
    Gray, R.M.: Vector Quantization. IEEE ASSP Magazine, 4–29 (1984)Google Scholar
  9. 9.
    Greenwood, M., Kinghorn, A.: SUVing: Automatic Silence/Unvoiced/Voiced Classification of Speech. Undergraduate Coursework, Department of Computer Science, The University of Sheffield, UK (1999)Google Scholar
  10. 10.
    Ibrahim, N.J., Razak, Z., Yakub, M., Yusoff, Z.M., Idris, M.Y.I., Tamil, E.M.: Quranic verse Recitation feature extraction using Mel- Frequency Cepstral Coefficients (MFCC). In: Proc. of the 4th IEEE Int. Colloquium on Signal Processing and its Application (CSPA), Kuala Lumpur, Malaysia (2008)Google Scholar
  11. 11.
    Kat, L.W.: Fung, P.: Fast accent identification and accented speech recognition. In: 1999 IEEE Proceedings International Conference on Acoustics, Speech, and Signal Processing, vol. 1 (1999)Google Scholar
  12. 12.
    Deshpande, S., Chikkerur, S., Govindaraju, V.: Accent Classification in Speech. In: Proceeding of the Fourth IEEE Workshop on Automatic Identification Advanced Technologies, pp. 139–143 (2005)Google Scholar
  13. 13.
    Quatier, T.E.: Discrete time speech processing principles and practice (2004)Google Scholar
  14. 14.
    Chen, T., Huang, C., Chang, E., Wang, J.: Automatic Accent Identification Using Gausssian Mixture Model. In: Automatic Speech Recognition and Understanding, ASRU 2001, Madonna di Campiglio, Italy, p. 343 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Saad Tanveer
    • 1
  • Aslam Muhammad
    • 1
  • A. M. Martinez-Enriquez
    • 2
  • G. Escalada-Imaz
    • 3
  1. 1.Department of CS & EU.E.T.LahorePakistan
  2. 2.Departmeent of CSCINVESTAV-IPNMexico
  3. 3.Artificial Intelligence Research InstituteIIIA-CSICSpain

Personalised recommendations