A Modified Back-Propagation Algorithm to Deal with Severe Two-Class Imbalance Problems on Neural Networks

  • R. Alejo
  • P. Toribio
  • R. M. Valdovinos
  • J. H. Pacheco-Sanchez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7329)


In this paper we propose a modified back-propagation to deal with severe two-class imbalance problems. The method consists in automatically to find the over-sampling rate to train a neural network (NN), i.e., identify the appropriate number of minority samples to train the NN during the learning stage, so to reduce training time. The experimental results show that the performance proposed method is a very competitive when it is compared with conventional SMOTE, and its training time is lesser.


two-class imbalance problems modified back-propagation re-sampling methods and SMOTE 


  1. 1.
    Anand, R., Mehrotra, K., Mohan, C., Ranka, S.: An improved algorithm for neural network classification of imbalanced training sets. IEEE Transactions on Neural Networks 4, 962–969 (1993)CrossRefGoogle Scholar
  2. 2.
    Ramanan, S., Clarkson, T., Taylor, J.: Adaptive algorithm for training pram neural networks on unbalanced data sets. Electronics Letters 34(13), 1335–1336 (1998)CrossRefGoogle Scholar
  3. 3.
    Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge and Data Engineering 18, 63–77 (2006)CrossRefGoogle Scholar
  4. 4.
    Bruzzone, L., Serpico, S.: Classification of imbalanced remote-sensing data by neural networks. Pattern Recognition Letters 18, 1323–1328 (1997)CrossRefGoogle Scholar
  5. 5.
    Lawrence, S., Burns, I., Back, A., Tsoi, A.C., Giles, C.L.: Neural Network Classification and Prior Class Probabilities. In: Orr, G., Müller, K.R., Caruana, R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 299–314. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Oh, S.H.: Error back-propagation algorithm for classification of imbalanced data. Neurocomputing 74(6), 1058–1061 (2011)CrossRefGoogle Scholar
  7. 7.
    Chawla, N.V., Cieslak, D.A., Hall, L.O., Joshi, A.: Automatically countering imbalance and its empirical relationship to cost. Data Min. Knowl. Discov. 17, 225–252 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Orriols-Puig, A., Bernadó-Mansilla, E., Goldberg, D.E., Sastry, K., Lanzi, P.L.: Facetwise analysis of xcs for problems with class imbalances. Trans. Evol. Comp. 13, 1093–1119 (2009)CrossRefGoogle Scholar
  9. 9.
    Crone, S.F., Lessmann, S., Stahlbock, R.: The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing. European Journal of Operational Research 173(3), 781–800 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    He, H., Garcia, E.: Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering In Knowledge and Data Engineering 21(9), 1263–1284 (2009)Google Scholar
  11. 11.
    Fawcett, T.: An introduction to roc analysis. Pattern Recogn. Lett. 27, 861–874 (2006)CrossRefGoogle Scholar
  12. 12.
    Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-sided selection. In: Proc. 14th International Conference on Machine Learning, pp. 179–186. Morgan Kaufmann (1997)Google Scholar
  13. 13.
    Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • R. Alejo
    • 1
  • P. Toribio
    • 1
  • R. M. Valdovinos
    • 2
  • J. H. Pacheco-Sanchez
    • 3
  1. 1.Tecnológico de Estudios Superiores de JocotitlánJocotitlánMexico
  2. 2.Centro Universitario UAEM Valle de ChalcoUniversidad Autónoma del Estado de MéxicoValle de ChalcoMexico
  3. 3.Instituto Tecnológico de TolucaMetepecMexico

Personalised recommendations