Up and Down Trend Associations in Analysis of Time Series Shape Association Patterns

  • Ildar Batyrshin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7329)


The method of recognition of shape association patterns with direct and inverse relationships is proposed. This method is based on a new time series shape association measure based on Up and Down trend associations. The application of this technique to analysis of associations between well production data in petroleum reservoirs is discussed.


Time series shape association measure time series pattern oilfield 


  1. 1.
    Agrawal, R., Faloutsos, C., Swami, A.: Efficient Similarity Search in Sequence Databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  2. 2.
    Agrawal, R., Lin, K.-I., Sawhney, H.S., Shim, K.: Fast similarity search in the presence of noise, scaling, and translation in time-series databases. In: 21st International Conference on Very Large Databases, pp. 490–501. Morgan Kaufmann, San Francisco (1995)Google Scholar
  3. 3.
    Batyrshin, I., Herrera-Avelar, R., Sheremetov, L., Panova, A.: Moving approximation transform and local trend associations in time series data bases. In: Batyrshin, I., Kacprzyk, J., Sheremetov, L., Zadeh, L. (eds.) Perception-based Data Mining and Decision Making in Economics and Finance. SCI, vol. 36, pp. 55–83. SpringerPhysicaVerlag (2007)Google Scholar
  4. 4.
    Batyrshin, I., Sheremetov, L., Velasco-Hernandez, J.X.: On axiomatic definition of time series shape association measures. In: Workshop on Operations Research and Data Mining, ORADM 2012, Cancun, pp. 117–127 (2012)Google Scholar
  5. 5.
    Batyrshin, I., Bulgakov, I., Hernandez, A.-L., Huitron, C., Chi, M., Raimundo, A., Cosultchi, A.: VMD-Petro®: Visualization and data mining tool for oilfields. In: Workshop on Operations Research and Data Mining, ORADM 2012, Cancun, pp. 140–148 (2012)Google Scholar
  6. 6.
    Batyrshin, I.Z., Sheremetov, L.B.: Perception-based approach to time series data mining. Applied Soft Computing 8, 1211–1221 (2008)CrossRefGoogle Scholar
  7. 7.
    Chatfield, C.: The Analysis of Time Series: An Introduction. Chapman and Hall (1984)Google Scholar
  8. 8.
    Das, G., Gunopulos, D.: Time series similarity and indexing. In: Handbook on Data Mining, pp. 279–304. Lawrence Erlbaum Associates (2003)Google Scholar
  9. 9.
    Fu, T.-C.: A review on time series data mining. Engineering Applications of Artificial Intelligence 24, 164–181 (2011)CrossRefGoogle Scholar
  10. 10.
    Goldin, D.Q., Kanellakis, P.C.: On Similarity Queries for Time-Series Data: Constraint Specification and Implementation. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 137–153. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  11. 11.
    Kacprzyk, J., Wilbik, A., Zadrozny, S.: Linguistic summarization of trends: a fuzzy logic based approach. In: 11th Int. Conf. Information Processing and Management of Uncertainty in Knowledge-based Systems, IPMU 2006, pp. 2166–2172 (2006)Google Scholar
  12. 12.
    Last, M., Kandel, A., Bunke, H.: Data Mining in Time Series Databases, Machine Perception and Artificial Intelligence, vol. 57. World Scientific (2004)Google Scholar
  13. 13.
    Liao, T.W.: Clustering of time series data – A survey. Pattern Recognition 38, 1857–1874 (2005)zbMATHCrossRefGoogle Scholar
  14. 14.
    Möller-Levet, C.S., Klawonn, F., Cho, K.-H., Wolkenhauer, O.: Fuzzy Clustering of Short Time-Series and Unevenly Distributed Sampling Points. In: Berthold, M., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 330–340. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Rafiei, D., Mendelzon, A.O.: Querying time series data based on similarity. IEEE Transactions on Knowledge and Data Engineering 12, 675–693 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ildar Batyrshin
    • 1
  1. 1.Mexican Petroleum InstituteMexico

Personalised recommendations