NURBS Parameterization: A New Method of Parameterization Using the Correlation Relationship between Nodes

  • Sawssen Jalel
  • Mohamed Naouai
  • Atef Hamouda
  • Malek Jebabli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7329)


NURBS (Non-uniform rational B-splines) has become the industry standard tools for the representation, design and data exchange of geometric information to be processed and used by computers because of their useful geometrical properties. The problem of the parameterization of data points in NURBS curve/surface has been considered by several of researchers. We propose in this paper a new parameterization method for NURBS approximation. The current methods of parameterization such as centripetal method uses only the previous knot vector to calculate the recent knot. In this paper, we give a new parameterization method based on the correlation of the nodes. This approach inherits the advantages of the relation and position of the knots.


NURBS curves Approximation parameterization knot vector 


  1. 1.
    Jung, H.B., Kim, K.: A New Parameterization Method for NURBS Surface Interpolation. Int. J. Adv. Manuf. Technol. 16, 784–790 (2000)CrossRefGoogle Scholar
  2. 2.
    Joken, S., Naoya, I.: Geometrically local isotropic independence and numerical analysis of the Mahalanobis metric in vector space. Pattern Recognition Letters, 709–716 (2010)Google Scholar
  3. 3.
    Mohamed, N., Atef, H., Sawssen, J., Christiane, W.: NURBS Skeleton: A New Shape Representation Scheme Using Skeletonization and NURBS Curves Modeling, pp. 197–205. Springer, Heidelberg (2011)Google Scholar
  4. 4.
    Shamsuddin, S.M., Ahmed, M.A.: A Hybrid Parameterization Method for NURBS. In: Proc. of the international Conference on Computer Graphics, Imaging and Visualization (CGIV 2004), pp. 15–20. IEEE Computer Society, Washington, DC (2004)Google Scholar
  5. 5.
    Farin, G.: From Conics to NURBS: A Tutorial and Survey. IEEE Comput. Graph. Appl. 12, 78–86 (1992)CrossRefGoogle Scholar
  6. 6.
    Choong-Gyoo, L.: A universal parameterization in B-spline curve and surface interpolation. Computer Aided Geometric Design 16, 407–422 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Lee, E.T.Y.: A Treatment of Conics in Parametric Rational Bezier Form, Boeing document, Boeing, Seattle, Wash. (February 1981)Google Scholar
  8. 8.
    Adi, D.I.S., Shamsuddin, S.M., Hashim, S.Z.M.: NURBS Curve Approximation using Particle Swarm Optimization. In: Seventh International Conference on Computer Graphics, Imaging and Visualization, pp. 73–79. IEEE Computer Society (2010)Google Scholar
  9. 9.
    Piegl, L., Tiller, W.: The NURBS book, 2nd edn. Springer-Verlag New York, Inc. (1997)Google Scholar
  10. 10.
    Godse, A.P., Gods, D.A.: Computer Graphics And Multimedia (2009)Google Scholar
  11. 11.
    Genichi, T., Rajesh, T.: The Mahalanobis-Taguchi strategy: a pattern technology system (2002)Google Scholar
  12. 12.
    Daviv, F.R.: An Introduction to NURBS. An Imprint of Elsevier (2001)Google Scholar
  13. 13.
    Lee, E.T.: Choosing nodes in parametric curve interpolation. Comput., 363–370 (1989)Google Scholar
  14. 14.
    Teknomo, K.: Similarity Measurement (2006)Google Scholar
  15. 15.
    Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A.K. Peters, Ltd. (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sawssen Jalel
    • 1
  • Mohamed Naouai
    • 1
  • Atef Hamouda
    • 1
  • Malek Jebabli
    • 1
  1. 1.Faculty of Science of TunisBelvédaire-Tunisia Laboratory LIPAHTunisFrance

Personalised recommendations