Perceptual Grouping Using Superpixels

  • Sven J. Dickinson
  • Alex Levinshtein
  • Cristian Sminchisescu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7329)


Perceptual grouping plays a critical role in both human and computer vision. However, with the object categorization community’s preoccupation with object detection, interest in perceptual grouping has waned. The reason for this is clear: the object-independent, mid-level shape priors that form the basis of perceptual grouping are subsumed by the object-dependent, high-level shape priors defined by a target object. As the recognition community moves from object detection back to object recognition, a linear search through a large database of target models is intractable, and perceptual grouping will be essential for sublinear scaling. We review two approaches to perceptual grouping based on grouping superpixels. In the first, we use symmetry to group superpixels into symmetric parts, and then group the parts to form structured objects. In the second, we use contour closure to group superpixels, yielding a figure-ground segmentation.


perceptual grouping superpixels object categorization 


  1. 1.
    Binford, T.O.: Visual perception by computer. In: Proceedings of the IEEE Conference on Systems and Control, Miami, FL (1971)Google Scholar
  2. 2.
    Blum, H.: A Transformation for Extracting New Descriptors of Shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)Google Scholar
  3. 3.
    Carreira, J., Sminchisescu, C.: Constrained parametric min-cuts for automatic object segmentation. In: IEEE International Conference on Computer Vision and Pattern Recognition (2010)Google Scholar
  4. 4.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)Google Scholar
  5. 5.
    Dickinson, S., Pentland, A., Rosenfeld, A.: From volumes to views: An approach to 3-D object recognition. CVGIP: Image Understanding 55(2), 130–154 (1992)zbMATHCrossRefGoogle Scholar
  6. 6.
    Dickinson, S., Pentland, A., Rosenfeld, A.: 3-D shape recovery using distributed aspect matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 174–198 (1992)CrossRefGoogle Scholar
  7. 7.
    Huttenlocher, D.P., Ullman, S.: Recognizing solid objects by alignment with an image. Int. J. Comput. Vision 5(2), 195–212 (1990)CrossRefGoogle Scholar
  8. 8.
    Kolmogorov, V., Boykov, Y.Y., Rother, C.: Applications of parametric maxflow in computer vision. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)Google Scholar
  9. 9.
    Levinshtein, A., Dickinson, S., Sminchisescu, C.: Multiscale Symmetric Part Detection and Grouping. In: IEEE International Conference on Computer Vision (September 2009)Google Scholar
  10. 10.
    Levinshtein, A., Sminchisescu, C., Dickinson, S.: Optimal Contour Closure by Superpixel Grouping. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 480–493. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: Turbopixels: Fast superpixels using geometric flows. PAMI 31(12), 2290–2297 (2009)CrossRefGoogle Scholar
  12. 12.
    Li, F., Carreira, J., Sminchisescu, C.: Object Recognition as Ranking Holistic Figure-Ground Hypotheses. In: CVPR (June 2010)Google Scholar
  13. 13.
    Lindeberg, T., Bretzner, L.: Real-Time Scale Selection in Hybrid Multi-Scale Representations. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 148–163. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Lowe, D.G.: Perceptual Organization and Visual Recognition. Kluwer Academic Publishers, Norwell (1985)CrossRefGoogle Scholar
  15. 15.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  16. 16.
    Roberts, L.: Machine perception of three-dimensional solids. In: Tippett, J., et al. (eds.) Optical and Electro-Optical Information Processing, pp. 159–197. MIT Press, Cambridge (1965)Google Scholar
  17. 17.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
  18. 18.
    Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock graphs and shape matching. International Journal of Computer Vision 35, 13–32 (1999)CrossRefGoogle Scholar
  19. 19.
    Stahl, J.S., Wang, S.: Edge grouping combining boundary and region information. IEEE Transactions on Image Processing 16(10), 2590–2606 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sven J. Dickinson
    • 1
  • Alex Levinshtein
    • 1
  • Cristian Sminchisescu
    • 2
  1. 1.University of TorontoCanada
  2. 2.University of BonnGermany

Personalised recommendations