Advertisement

A Tool for Hand-Sign Recognition

  • David J. Rios Soria
  • Satu Elisa Schaeffer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7329)

Abstract

We present a software tool created for human-computer interaction based on hand gestures. The underlying algorithm utilizes computer vision techniques. The tool is able to recognize in real-time six different hand signals, captured using a web cam. Experiments conducted to evaluate the system performance are reported.

Keywords

Convex Hull Hand Gesture Hand Gesture Recognition Screen Capture Hand Sign 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wachs, J.P., Kölsch, M., Stern, H., Edan, Y.: Vision-based hand-gesture applications. Commun. ACM 54, 60–71 (2011)CrossRefGoogle Scholar
  2. 2.
    Mahmoud, T.M.: A new fast skin color detection technique. World Academy of Science, Engineering and Technology 43, 501–505 (2008)Google Scholar
  3. 3.
    Vezhnevets, V., Sazonov, V., Andreeva, A.: A survey on pixel-based skin color detection techniques. In: Proceedings of GraphiCon, pp. 85–92 (2003)Google Scholar
  4. 4.
    Kakumanu, P., Makrogiannis, S., Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recognition 40, 1106–1122 (2007)zbMATHCrossRefGoogle Scholar
  5. 5.
    Parker, J.R.: Algorithms for Image Processing and Computer Vision, 1st edn. John Wiley & Sons, Inc., New York (1996)Google Scholar
  6. 6.
    Erol, A., Bebis, G., Nicolescu, M., Boyle, R.D., Twombly, X.: Vision-based hand pose estimation: A review. Computer Vision and Image Understanding 108, 52–73 (2007)CrossRefGoogle Scholar
  7. 7.
    Garg, P., Aggarwal, N., Sofat, S.: Vision based hand gesture recognition. Engineering and Technology 49, 972–977 (2009)Google Scholar
  8. 8.
    Zabulis, X., Baltzakis, H., Argyros, A.: Vision-based hand gesture recognition for human-computer interaction. In: Stephanidis, C. (ed.) The Universal Access Handbook, pp. 1–56. Lawrence Erlbaum Associates, Inc. (2009)Google Scholar
  9. 9.
    Hassanpour, R., Wong, S., Shahbahrami, A.: VisionBased Hand Gesture Recognition for Human Computer Interaction: A Review, pp. 125–134. IADIS (2008)Google Scholar
  10. 10.
    Sánchez-Nielsen, E., Laguna, L., Canalís, L.A., Hernández-Tejera, M.: Hand gesture recognition for human-machine interaction. Journal of WCGS 12, 395–402 (2004)Google Scholar
  11. 11.
    Çetin, M., Malima, A.K., Özgür, E.: A fast algorithm for vision-based hand gesture recognition for robot control. In: Proceedings of the IEEE Conference on Signal Processing and Communications Applications. IEEE (2006)Google Scholar
  12. 12.
    Kovac, J., Peer, P., Solina, F.: Human skin colour clustering for face detection. In: EUROCON 2003: Computer as a Tool. IEEE (2003)Google Scholar
  13. 13.
    OpenCV (visited in December 2011), http://opencv.willowgarage.com/
  14. 14.
    Crampton, S.C., Betke, M.: Counting fingers in real time: A webcam-based human-computer interface game applications. In: Proceedings of the Conference on Universal Access in Human-Computer Interaction, pp. 1357–1361 (2003)Google Scholar
  15. 15.
    Davies, E.R.: Machine Vision: Theory, Algorithms, Practicalities. Morgan Kaufmann Publishers Inc., San Francisco (2004)Google Scholar
  16. 16.
    Python (visited in December 2011), http://www.python.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David J. Rios Soria
    • 1
  • Satu Elisa Schaeffer
    • 1
  1. 1.Postgraduate Division in Computation and Mechatronics (DCM), School of Mechanical and Electrical Engineering (FIME)Universidad Autónoma de Nuevo León (UANL)San Nicolás de los GarzaMexico

Personalised recommendations