Decomposing Process Mining Problems Using Passages

  • Wil M. P. van der Aalst
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7347)


Process discovery—discovering a process model from example behavior recorded in an event log—is one of the most challenging tasks in process mining. Discovery approaches need to deal with competing quality criteria such as fitness, simplicity, precision, and generalization. Moreover, event logs may contain low frequent behavior and tend to be far from complete (i.e., typically only a fraction of the possible behavior is recorded). At the same time, models need to have formal semantics in order to reason about their quality. These complications explain why dozens of process discovery approaches have been proposed in recent years. Most of these approaches are time-consuming and/or produce poor quality models. In fact, simply checking the quality of a model is already computationally challenging.

This paper shows that process mining problems can be decomposed into a set of smaller problems after determining the so-called causal structure. Given a causal structure, we partition the activities over a collection of passages. Conformance checking and discovery can be done per passage. The decomposition of the process mining problems has two advantages. First of all, the problem can be distributed over a network of computers. Second, due to the exponential nature of most process mining algorithms, decomposition can significantly reduce computation time (even on a single computer). As a result, conformance checking and process discovery can be done much more efficiently.


process mining conformance checking process discovery distributed computing business process management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Berlin (2011)zbMATHGoogle Scholar
  3. 3.
    van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying History on Process Models for Conformance Checking and Performance Analysis. WIREs Data Mining and Knowledge Discovery 2(2), 182–192 (2012)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek, H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of Workflow Nets: Classification, Decidability, and Analysis. Formal Aspects of Computing 23(3), 333–363 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    van der Aalst, W.M.P., van Hee, K.M., van der Werf, J.M., Verdonk, M.: Auditing 2.0: Using Process Mining to Support Tomorrow’s Auditor. IEEE Computer 43(3), 90–93 (2010)CrossRefGoogle Scholar
  6. 6.
    van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther, C.W.: Process Mining: A Two-Step Approach to Balance Between Underfitting and Overfitting. Software and Systems Modeling 9(1), 87–111 (2010)CrossRefGoogle Scholar
  7. 7.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  8. 8.
    Adriansyah, A., van Dongen, B., van der Aalst, W.M.P.: Conformance Checking using Cost-Based Fitness Analysis. In: Chi, C.H., Johnson, P. (eds.) IEEE International Enterprise Computing Conference (EDOC 2011), pp. 55–64. IEEE Computer Society (2011)Google Scholar
  9. 9.
    Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards Robust Conformance Checking. In: zur Muehlen, M., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp. 122–133. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Adriansyah, A., Sidorova, N., van Dongen, B.F.: Cost-based Fitness in Conformance Checking. In: International Conference on Application of Concurrency to System Design (ACSD 2011), pp. 57–66. IEEE Computer Society (2011)Google Scholar
  11. 11.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Agrawal, R., Shafer, J.C.: Parallel Mining of Association Rules. IEEE Transactions on Knowledge and Data Engineering 8(6), 962–969 (1996)CrossRefGoogle Scholar
  13. 13.
    Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based on Regions of Languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 375–383. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Boukala, M.C., Petrucci, L.: Towards Distributed Verification of Petri Nets properties. In: Proceedings of the International Workshop on Verification and Evaluation of Computer and Communication Systems (VECOS 2007), pp. 15–26. British Computer Society (2007)Google Scholar
  15. 15.
    Bratosin, C., Sidorova, N., van der Aalst, W.M.P.: Distributed Genetic Process Mining. In: Ishibuchi, H. (ed.) IEEE World Congress on Computational Intelligence (WCCI 2010), Barcelona, Spain, pp. 1951–1958. IEEE (July 2010)Google Scholar
  16. 16.
    Calders, T., Guenther, C., Pechenizkiy, M., Rozinat, A.: Using Minimum Description Length for Process Mining. In: ACM Symposium on Applied Computing (SAC 2009), pp. 1451–1455. ACM Press (2009)Google Scholar
  17. 17.
    Cannataro, M., Congiusta, A., Pugliese, A., Talia, D., Trunfio, P.: Distributed Data Mining on Grids: Services, Tools, and Applications. IEEE Transactions on Systems, Man, and Cybernetics, Part B 34(6), 2451–2465 (2004)CrossRefGoogle Scholar
  18. 18.
    Carmona, J., Cortadella, J.: Process Mining Meets Abstract Interpretation. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6321, pp. 184–199. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Carmona, J.A., Cortadella, J., Kishinevsky, M.: A Region-Based Algorithm for Discovering Petri Nets from Event Logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Carmona, J., Cortadella, J., Kishinevsky, M.: Divide-and-Conquer Strategies for Process Mining. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 327–343. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249 (1998)CrossRefGoogle Scholar
  22. 22.
    Cook, J.E., Wolf, A.L.: Software Process Validation: Quantitatively Measuring the Correspondence of a Process to a Model. ACM Transactions on Software Engineering and Methodology 8(2), 147–176 (1999)CrossRefGoogle Scholar
  23. 23.
    Darondeau, P.: Unbounded Petri Net Synthesis. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2004. LNCS, vol. 3098, pp. 413–438. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust Process Discovery with Artificial Negative Events. Journal of Machine Learning Research 10, 1305–1340 (2009)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Hilbert, M., Lopez, P.: The World’s Technological Capacity to Store, Communicate, and Compute Information. Science 332(6025), 60–65 (2011)CrossRefGoogle Scholar
  26. 26.
    IEEE Task Force on Process Mining. Process Mining Manifesto. In: Business Process Management Workshops. LNBIP, vol. 99, pp. 169–194. Springer, Berlin (2012)Google Scholar
  27. 27.
    Lakos, C., Petrucci, L.: Modular Analysis of Systems Composed of Semiautonomous Subsystems. In: Application of Concurrency to System Design (ACSD 2004), pp. 185–194. IEEE Computer Society (2004)Google Scholar
  28. 28.
    Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.: Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute (2011)Google Scholar
  29. 29.
    Alves de Medeiros, A.K., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic Process Mining: An Experimental Evaluation. Data Mining and Knowledge Discovery 14(2), 245–304 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Muñoz-Gama, J., Carmona, J.: A Fresh Look at Precision in Process Conformance. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Munoz-Gama, J., Carmona, J.: Enhancing Precision in Process Conformance: Stability, Confidence and Severity. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2011), Paris, France. IEEE (April 2011)Google Scholar
  32. 32.
    Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on Monitoring Real Behavior. Information Systems 33(1), 64–95 (2008)CrossRefGoogle Scholar
  33. 33.
    Solé, M., Carmona, J.: Process Mining from a Basis of State Regions. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  34. 34.
    De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A Robust F-measure for Evaluating Discovered Process Models. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2011), Paris, France, pp. 148–155. IEEE (April 2011)Google Scholar
  35. 35.
    Weijters, A., van der Aalst, W.M.P.: Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)Google Scholar
  36. 36.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process Discovery using Integer Linear Programming. Fundamenta Informaticae 94, 387–412 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wil M. P. van der Aalst
    • 1
  1. 1.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenThe Netherlands

Personalised recommendations