Skip to main content

An Adaptive Mesh Algorithm for the Numerical Solution of Electrical Models of the Heart

  • Conference paper
Computational Science and Its Applications – ICCSA 2012 (ICCSA 2012)

Abstract

Computer models have become valuable tools for the study and comprehension of the complex phenomena of cardiac electrophysiology. However, the high complexity of the biophysical processes translates into complex mathematical and computational models. In this paper we evaluate a numerical algorithm based on mesh adaptivity and finite volume method aiming to accelerate these simulations. This is a very attractive approach since the spreading electrical wavefront corresponds only to a small fraction of the cardiac tissue. Usually, the numerical solution of the partial differential equations that model the phenomenon requires very fine spatial discretization to follow the wavefront, which is approximately 0.2 mm. The use of uniform meshes leads to high computational cost as it requires a large number of mesh points. In this sense, the tests reported in this work show that simulations of two-dimensional models of cardiac tissue have been accelerated by more than 80 times using the adaptive mesh algorithm, with no significant loss in accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendahmane, M., Bürger, R., Ruiz-Baier, R.: A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology. Numerical Methods for Partial Differential Equations 26(6), 1377–1404 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Burgarelli, D., Kischinhevsky, M.: Efficient numerical simulation of a simplified thermoacoustic engine with new adaptive mesh refinement tools. Computational Methods in Engineering 99 (1999)

    Google Scholar 

  3. Burgarelli, D., Kischinhevsky, M., Biezuner, R.J.: A new adaptive mesh refinement strategy for numerically solving evolutionary pde’s. J. Comput. Appl. Math. 196, 115–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cherry, E.M., Greenside, H.S., Henriquez, C.S.: Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refinement method. Chaos: An Interdisciplinary Journal of Nonlinear Science 13(3), 853–865 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coudiere, Y., Pierre, C., Turpault, R.: A 2d/3d finite volume method used to solve the bidomain equations of electrocardiology. In: Proceedings of Algoritmy, pp. 1–10 (2009)

    Google Scholar 

  6. Sato, D., Xie, Y., Weiss, J.N., Qu, Z., Garfinkel, A., Sanderson, A.R.: Acceleration of cardiac tissue simulation with graphic processing units. Med. Biol. Eng. Comput. 47, 1011–1015 (2009)

    Article  Google Scholar 

  7. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Handbook of Numerical Analysis, vol. 7, pp. 713–1018 (2000)

    Google Scholar 

  8. Franzone, P., Deuflhard, P., Erdmann, B., Lang, J., Pavarino, L.: Adaptivity in space and time for reaction-diffusion systems in electrocardiology. SIAM Journal on Scientific Computing 28(3), 942 (2007)

    Article  Google Scholar 

  9. Gima, K., Rudy, Y.: Ionic current basis of electrocardiographic waveforms: A model study. Circulation Research 90, 889–896 (2002)

    Article  Google Scholar 

  10. Harrild, D., Henriquez, C.: A finite volume model of cardiac propagation. Annals of Biomedical Engineering 25(2), 315–334 (1997)

    Article  Google Scholar 

  11. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology 117, 500–544 (1952)

    Google Scholar 

  12. Hunter, P.J., Borg, T.K.: Integration from proteins to organs: the physiome project. Nature Reviews Molecular Cell Biology 4(3), 237–243 (2003)

    Article  Google Scholar 

  13. Luo, C., Rudy, Y.: A model of the ventricular cardiac action potential. depolarization, repolarization, and their interaction. Circ. Res. 68(6), 1501–1526 (1991)

    Article  Google Scholar 

  14. OMS: Organização Mundial da Saúde. Publicação Eletron̂ica. Uĺtimo acesso em 17 de Agosto de 2011 (2010), http://www.who.int/

  15. Plonsey, R.: Bioelectric sources arising in excitable fibers (ALZA lecture). Ann. Biomed. Eng. 16(6), 519–546 (1988)

    Article  Google Scholar 

  16. Rocha, B.M., Campos, F.O., Amorim, R.M., Plank, G., dos Santos, R.W., Liebmann, M., Haase, G.: Accelerating cardiac excitation spread simulations using graphics processing units. Concurrency and Computation: Practice and Experience (2010)

    Google Scholar 

  17. Sachse, F.B.: Computational cardiology: modeling of anatomy, electrophysiology, and mechanics, vol. 2966. Springer (2004)

    Google Scholar 

  18. Weber dos Santos, R., Plank, G., Bauer, S., Vigmond, E.J.: Preconditioning Techniques for the Bidomain Equations. Lecture Notes In Computational Science And Engineering 40, 571–580 (2004)

    Article  MathSciNet  Google Scholar 

  19. Southern, J., Gorman, G., Piggott, M., Farrell, P.: Parallel anisotropic mesh adaptivity with dynamic load balancing for cardiac electrophysiology. Journal of Computational Science 3, 8–16 (2012)

    Article  Google Scholar 

  20. Southern, J., Gorman, G., Piggott, M., Farrell, P., Bernabeu, M., Pitt-Francis, J.: Simulating cardiac electrophysiology using anisotropic mesh adaptivity. Journal of Computational Science 1(2), 82–88 (2010)

    Article  Google Scholar 

  21. Sundnes, J.: Computing the electrical activity in the heart. Springer (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oliveira, R.S., Rocha, B.M., Burgarelli, D., Meira, W., dos Santos, R.W. (2012). An Adaptive Mesh Algorithm for the Numerical Solution of Electrical Models of the Heart. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2012. ICCSA 2012. Lecture Notes in Computer Science, vol 7333. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31125-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31125-3_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31124-6

  • Online ISBN: 978-3-642-31125-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics