Skip to main content

Grid Enabled High Level ab initio Electronic Structure Calculations for the N2+N2 Exchange Reaction

  • Conference paper
Computational Science and Its Applications – ICCSA 2012 (ICCSA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7333))

Included in the following conference series:

Abstract

A Grid enabled implementation of the first two blocks of an ab initio simulator of molecular systems is described by considering as a benchmark case the N2(\({}^1{\Sigma}_g^+\)) + N2(\({}^1{\Sigma}_g^+\)) system. Following the related workflow and thanks to the use of the Grid, first a potential energy surface allowing the N atom reactive exchange has been generated by performing high level ab initio (MP2 and Coupled Cluster) calculations for a large number of geometries, then a global fit of the ab initio points has been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nesbitt, D.J.: High-resolution infrared spectroscopy of weakly bound molecular complexes. Chem. Rev. 88, 843–870 (1988)

    Article  Google Scholar 

  2. Weber, A.: Structure and Dynamics of Weakly Bound Molecular Complexes (NATO Science Series C) (1987)

    Google Scholar 

  3. Capitelli, M.: Non-equilibrium vibrational kinetics. Springer, Berlin (1986)

    Book  Google Scholar 

  4. Armenise, I., Capitelli, M., Garcia, E., Gorse, C., Laganà, A., Longo, S.: Deactivation dynamics of vibrationally excited nitrogen molecules by nitrogen atoms. Effects on non-equilibrium vibrational distribution and dissociation rates of nitrogen under electrical discharges. Chem. Phys. Lett. 200, 597 (1992)

    Article  Google Scholar 

  5. Knauth, D.C., Andersson, B.G., McCandliss, S.R., Moos, H.W.: The Interstellar N2 Abundance toward HD 124314 from Far-Ultraviolet Observations. Nature 429, 636 (2004)

    Article  Google Scholar 

  6. Raich, J.C., Gillis, N.S.: The anisotropic interaction between nitrogen molecules from solid state data. J. Chem. Phys. 66, 846 (1977)

    Article  Google Scholar 

  7. MacRury, T.B., Steele, W.A., Berne, B.J.: Intermolecular potential models for anisotropic molecules, with applications to N2, CO2, and benzene. J. Chem. Phys. 64, 1288 (1976)

    Article  Google Scholar 

  8. Cheung, P.S.Y., Powles, J.G.: The properties of liquid nitrogen V. Computer simulation with quadrupole interaction. Mol. Phys. 32, 1383 (1976)

    Article  Google Scholar 

  9. Cheung, P.S.Y., Powles, J.G.: The properties of liquid nitrogen. Mol. Phys. 30, 921 (1975)

    Article  Google Scholar 

  10. Evans, D.J.: Transport properties of homonuclear diatomics I. Dilute gases. Mol. Phys. 34, 103 (1977)

    Article  Google Scholar 

  11. Cappelletti, D., Vecchiocattivi, F., Pirani, F., Heck, E.L., Dickinson, A.S.: An Intermolecular potential for Nitrogen from a multi-property analysis. Mol. Phys. 93, 485 (1998)

    Article  Google Scholar 

  12. Aquilanti, V., Bartolomei, M., Cappelletti, D., Caramona-Novillo, E., Pirani, F.: The N2-N2 system: An experimental potential energy surface and calculated rotovibrational levels of the molecular nitrogen dimer. J. Chem. Phys. 93, 485 (1998)

    Google Scholar 

  13. Gomez, L., Bussery-Honvault, B., Cauchy, T., Bartolomei, M., Cappelletti, D., Pirani, F.: Global fits of new intermolecular ground state potential energy surfaces for N2-H2 and N2-N2 van der Waals dimers. Chem. Phys. Lett. 445, 99–107 (2007)

    Article  Google Scholar 

  14. van der Avoid, A., Wormer, P.E.S., Jansen, A.P.J.: An improved intermolecular potential for nitrogen. J. Chem. Phys. 84, 1629–1635 (1986)

    Article  Google Scholar 

  15. Cappelletti, D., Vecchiocattivi, F., Pirani, F., McCourt, F.R.W.: Glory structure in the N2-N2 total integral scattering cross section. A test for the intermolecular potential energy surface. Chem. Phys. Lett. 248, 237–243 (1996)

    Article  Google Scholar 

  16. Huo, S.W.M., Green, S.: Quantum calculations for rotational energy transfer in nitrogen molecule collisions. J. Chem. Phys. 104, 7572–7589 (1996)

    Article  Google Scholar 

  17. Stallcop, J.R., Partridge, H.: The N2-N2 potential energy surface. Chem. Phys. Lett. 281, 212–220 (1997)

    Article  Google Scholar 

  18. Wada, A., Kanamori, H., Iwata, S.: Ab Initio MO studies of van der Waals molecule (N2)2: Potential energy surface and internal motion. J. Chem. Phys. 109, 9434–9438 (1998)

    Article  Google Scholar 

  19. Couronne, O., Ellinger, Y.A.: An ab initio and DFT study of (N2)2 dimers. Chem. Phys. Lett. 306, 71–77 (1999)

    Article  Google Scholar 

  20. Leonhard, K., Deiters, U.K.: Monte Carlo Simulations of Nitrogen Using an Ab Initio Potential. Mol. Phys. 100, 2571–2585 (2002)

    Article  Google Scholar 

  21. Karimi Jafari, M.H., Maghari, A., Shahbazian, S.: An improved ab initio potential energy surface for N2-N2. Chem. Phys. 314, 249–262 (2005)

    Article  Google Scholar 

  22. Costantini, A., Gervasi, O., Manuali, C., Lago, N.F., Rampino, S., Laganà, A.: COMPCHEM: progress towards GEMS a Grid Empowered Molecular Simulator and beyond. Journal of Grid Computing 8, 571–586 (2010)

    Article  Google Scholar 

  23. Laganá, A., Balucani, N., Crocchianti, S., Casavecchia, P., Garcia, E., Saracibar, A.: An Extension of the Molecular Simulator GEMS to Calculate the Signal of Crossed Beam Experiments. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part III. LNCS, vol. 6784, pp. 453–465. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  24. EGI-InSPIRE project RI-261323, http://www.egi.eu (last access: January 11, 2012)

  25. EGI, http://uf2011.egi.eu/ (last access December 14, 2011)

  26. IGI, http://grid.infn.it/ (last access December 14, 2011)

  27. COMPCHEM, http://compchem.unipg.it (last access November 14, 2011)

  28. Manuali, C., Costantini, A., Laganà, A., Cecchi, M., Ghiselli, A., Carpené, M., Rossi, E.: Efficient Workload Distribution Bridging HTC and HPC in Scientific Computing. In: Murgante, B., et al. (eds.) ICCSA 2012, Part I. LNCS, vol. 7333, pp. 348–360. Springer, Heidelberg (2012)

    Google Scholar 

  29. Hay, P.J., Pack, R.T., Martin, R.L.: Electron correlation effects on the N2-N2 interaction. J. Chem. Phys. 81, 1360–1372 (1984)

    Article  Google Scholar 

  30. Feller, D.: The Role of Databases in Support of Computational Chemistry Calculations. J. Chem. Phys. 17, 1571–1586 (1996)

    Google Scholar 

  31. Schuchardt, K., Didier, B., Elsethagen, T., Sun, L., Gurumoorthi, V., Chase, J., Li, J., Windus, T.: Basis Set Exchange: A Community Database for Computational Sciences. J. Chem Inf. Model. 47, 1045–1052 (2007)

    Article  Google Scholar 

  32. Møller, C., Plesset, M.S.: Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 46, 618 (1934)

    Article  MATH  Google Scholar 

  33. Boys, S.F., Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)

    Article  Google Scholar 

  34. Piecuch, P., Kucharski, S.A., Kowalski, K., Musial, M.: Efficient computer implementation of the renormalized coupled-cluster methods: The R-CCSD[T], R-CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches. Comput. Phys. Comm. 149, 71–96 (2002)

    Article  Google Scholar 

  35. Bentz, J.L., Olson, R.M., Gordon, M.S., Schmidt, M.W., Kendall, R.A.: Coupled cluster algorithms for networks of shared memory parallel processors. Comput. Phys. Comm. 176, 589–600 (2007)

    Article  MATH  Google Scholar 

  36. Olson, R.M., Bentz, J.L., Kendall, R.A., Schmidt, M.W., Gordon, M.S.: A Novel Approach to Parallel Coupled Cluster Calculations: Combining Distributed and Shared Memory Techniques for Modern Cluster Based Systems. J. Comput. Theo. Chem. 3, 1312–1328 (2007)

    Article  Google Scholar 

  37. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.J., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., Montgomery, J.A.: General atomic and molecular electronic structure system. J. Comp. Chem. 14, 1347–1363 (1993)

    Article  Google Scholar 

  38. Gordon, M.S., Schmidt, M.W.: Theory and Applications of Computational Chemistry, the first forty years (2005)

    Google Scholar 

  39. Laganà, A.: Potential surface graphical study for chemical reactions. Computer and Chemistry 4, 137–143 (1980)

    Article  Google Scholar 

  40. Lee, T.J., Rice, J.E.: Theoretical characterization of tetrahedral N4. J. Chem. Phys. 94, 1215–1221 (1991)

    Article  Google Scholar 

  41. Manuali, C., Laganà, A.: A New Collaborative Framework for a Web Service Approach to Grid Empowered Calculations. Future Generation of Computer Systems 27(3), 315–318 (2011)

    Article  Google Scholar 

  42. Hay, P.J., Pack, R.T., Martin, R.L.: Electron correlation effects on the N2-N2 interaction. J. Chem. Phys. 81, 1360–1372 (1984)

    Article  Google Scholar 

  43. Lee, T.J., Taylor, P.R.: A Diagnostic for Determining the Quality of Single-Reference Electron Correlation Methods. Int. J. Quant. Chem. S23, 199–207 (1989)

    Google Scholar 

  44. Sorbie, K.S., Murrell, J.N.: Analytical potentials for triatomic molecules from spectroscopic data. Mol. Phys. 52, 1387 (1975)

    Article  Google Scholar 

  45. Aguado, A., Tablero, C., Paniagua, M.: Global fit of ab initio potential energy surfaces: II.1. Tetraatomic systems ABCD. Comput. Phys. Comm. 134, 97 (2001)

    Article  MATH  Google Scholar 

  46. Aguado, A., Suarez, C., Paniagua, M.: Accurate global fit of the H4 potential energy surface. J. Chem. Phys. 101, 404–4010 (1994)

    Article  Google Scholar 

  47. Garcia, E., Saracibar, A., Gomez-Carrasco, S., Laganà, A.: Modelling the global potential energy surface of the N + N2 reaction from ab initio data. Phys. Chem. Chem. Phys. 10, 2552–2558 (2008)

    Article  Google Scholar 

  48. Caridade, P.J.S.B., Galvao, B.R.L., Varandas, A.J.C.: Quasiclassical Trajectory Study of Atom-Exchange and Vibrational Relaxation Processes in Collisions of Atomic and Molecular Nitrogen. J. Phys. Chem. A 114, 6063–6070 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verdicchio, M., Pacifici, L., Laganà, A. (2012). Grid Enabled High Level ab initio Electronic Structure Calculations for the N2+N2 Exchange Reaction. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2012. ICCSA 2012. Lecture Notes in Computer Science, vol 7333. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31125-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31125-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31124-6

  • Online ISBN: 978-3-642-31125-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics