Skip to main content

Nanostructure Formation in Hydrogels

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

Hydrogels are divided into nanogels and micellar gels. Nanogels are further divided into physically cross-linked and chemically cross-linked, while micellar gels are divided into micelle-incorporated gels, physically bonded, and covalently bonded gels. Micellar gels can be synthetic or peptide based. Peptide-based gels can be β-sheet forming or surfactant like. The presence of a large fraction of water in the structure of nanogels increases drug-loading capacity, compared with block-copolymer micelles. Micellar gels can increase duration of drug release, reduce gelation time, and improve degradation rate. Due to their high water content, high permeability, resilience, and degradability, nanogels and micellar gels are used extensively as a substitute for soft tissues in medicine, as a vehicle for drug delivery, and as water absorbent in oil recovery and agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cushing MC, Anseth KS (2007) Hydrogel cell cultures. Science 316:1133–1134

    Article  Google Scholar 

  2. Peppas NA, Lustig SR (1986) Solute Diffusion in Hydrophilic Network Structures. In: Hydrogels in Medicine and Pharmacy. I. Fundamentals. CRC Press, Boca Raton, FL

    Google Scholar 

  3. Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed 48:5418–5429

    Article  Google Scholar 

  4. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649

    Article  Google Scholar 

  5. Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678–1719

    Article  Google Scholar 

  6. Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50:1475–1486

    Article  Google Scholar 

  7. Abd El-Rehim HA (2006) Characterization and possible agricultural application of polyacrylamide/sodium alginate crosslinked hydrogels prepared by ionizing radiation. J Appl Polym Sci 102:6088–6090

    Article  Google Scholar 

  8. Zolfaghari R, Katbab AA, Nabavizadeh J et al (2006) Preparation and characterization of nanocomposite hydrogels based on polyacrylamide for enhanced oil recovery applications. J Appl Polym Sci 100:2096–2103

    Article  Google Scholar 

  9. Kopecek J (2009) Hydrogels: from soft contact lenses and implants to self-assembled nanomaterials. J Polym Sci Part A Polym Chem 47:5929–5946

    Article  Google Scholar 

  10. Yallapu MM, Jaggi M, Chauhan SC (2011) Design and engineering of nanogels for cancer treatment. Drug Discov Today 16:457–463

    Article  Google Scholar 

  11. Yu SY, Yao P, Jiang M et al (2006) Nanogels prepared by self-assembly of oppositely charged globular proteins. Biopolymers 83:148–158

    Article  Google Scholar 

  12. Doloud-Mahammed S, Couvreur P, Gref R (2007) Novel self-assembling nanogels: Stability and lyophilisation studies. Int J Pharmaceut 332:185–191

    Article  Google Scholar 

  13. Pan GQ, Guo QP, Cao CB et al (2013) Thermo-responsive molecularly imprinted nanogels for specific recognition and controlled release of proteins. Soft Matter 9:3840–3850

    Article  Google Scholar 

  14. Rolland JP, Maynor BW, Euliss LE et al (2005) Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 127:10096–10100

    Article  Google Scholar 

  15. Sahiner N, Godbey WT, McPherson GL et al (2006) Microgel, nanogel and hydrogel-hydrogel semi-IPN composites for biomedical applications: synthesis and characterization. Colloid Polym Sci 284:1121–1129

    Article  Google Scholar 

  16. Lee WC, Li YC, Chu IM (2006) Amphiphilic poly(d, l-lactic acid)/poly(ethylene glycol)/poly(d, l-lactic acid) nanogels for controlled release of hydrophobic drugs. Macromol Biosci 6:846–854

    Article  Google Scholar 

  17. McAllister K, Sazani P, Adam M et al (2002) Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents. J Am Chem Soc 124:15198–15207

    Article  Google Scholar 

  18. Mercado AE, He X, Xu WJ et al (2008) The release characteristics of a model protein from self-assembled succinimide-terminated poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles. Nanotechnology 19:325609

    Article  Google Scholar 

  19. Sarvestani AS, Xu W, He X et al (2007) Gelation and degradation characteristics of in situ photo-crosslinked poly(l-lactid-co-ethylene oxide-co-fumarate) hydrogels. Polymer 48:7113–7120

    Article  Google Scholar 

  20. Jabbari E, Yang X, Moeinzadeh S et al (2012) Drug release kinetics, cell uptake, and tumor toxicity of hybrid VVVVVVKK peptide-assembled polylactide nanoparticles. Eur J Pharm Biopharm 84:49–62

    Article  Google Scholar 

  21. Jabbari E (2009) Targeted delivery with peptidomimetic conjugated self-assembled nanoparticles. Pharm Res 26:612–630

    Article  Google Scholar 

  22. Vinogradov SV, Kohli E, Zeman AD (2006) Comparison of nanogel drug carriers and their formulations with nucleoside 5′-triphosphates. Pharm Res 23:920–930

    Article  Google Scholar 

  23. He X, Ma J, Mercado AE et al (2008) Cytotoxicity of paclitaxel in biodegradable self-assembled core-shell poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles. Pharm Res 25:1552–1562

    Article  Google Scholar 

  24. Mercado AE, Jabbari E (2010) Effect of encapsulation or grafting on release kinetics of recombinant human bone morphogenetic protein-2 from self-assembled poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles. Microsc Res Tech 73:824–833

    Article  Google Scholar 

  25. Mercado AE, Ma J, He X et al (2009) Release characteristics and osteogenic activity of recombinant human bone morphogenetic protein-2 grafted to novel self-assembled poly(lactide-co-glycolide fumarate) nanoparticles. J Contr Rel 140:148–156

    Article  Google Scholar 

  26. Mercado AE, Yang X, He X et al (2012) Effect of grafting BMP2‐derived peptide to nanoparticles on osteogenic and vasculogenic expression of stromal cells. J Tissue Eng Regen Med. doi: 10.1002/term.1487

    Google Scholar 

  27. Lu CH, Mikhail AS, Wang XY et al (2012) Hydrogels containing core cross-linked block co-polymer micelles. J Biomater Sci Polym Ed 23:1069–1090

    Article  Google Scholar 

  28. Chen MC, Tsai HW, Liu CT et al (2009) A nanoscale drug-entrapment strategy for hydrogel-based systems for the delivery of poorly soluble drugs. Biomaterials 30:2102–2111

    Article  Google Scholar 

  29. Huynh CT, Nguyen MK, Lee DS (2011) Injectable block copolymer hydrogels: achievements and future challenges for biomedical applications. Macromolecules 44:6629–6636

    Article  Google Scholar 

  30. Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28:1107–1170

    Article  Google Scholar 

  31. Cohn D, Lando G, Sosnik A et al (2006) PEO-PPO-PEO-based poly(ether ester urethane)s as degradable reverse thermo-responsive multiblock copolymers. Biomaterials 27:1718–1727

    Article  Google Scholar 

  32. Kim HK, Shim WS, Kim SE et al (2009) Injectable in situ-forming ph/thermo-sensitive hydrogel for bone tissue engineering. Tissue Eng Part A 15:923–933

    Article  Google Scholar 

  33. O’Lenick TG, Jin NX, Woodcock JW et al (2011) Rheological properties of aqueous micellar gels of a thermo- and ph-sensitive aba triblock copolymer. J Phys Chem B 115:2870–2881

    Article  Google Scholar 

  34. Sanson N, Rieger J (2010) Synthesis of nanogels/microgels by conventional and controlled radical crosslinking copolymerization. Polym Chem 1:965–977

    Article  Google Scholar 

  35. Nicolai T, Colombani O, Chassenieux C (2010) Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers. Soft Matter 6:3111–3118

    Article  Google Scholar 

  36. Moeinzadeh S, Khorasani SN, Ma J et al (2011) Synthesis and gelation characteristics of photo-crosslinkable star poly (ethylene oxide-co-lactide-glycolide acrylate) macromonomers. Polymer 52:3887–3896

    Article  Google Scholar 

  37. Moeinzadeh S, Barati D, He X et al (2012) Gelation characteristics and osteogenic differentiation of stromal cells in inert hydrolytically degradable micellar polyethylene glycol hydrogels. Biomacromolecules 13:2073–2086

    Article  Google Scholar 

  38. Moeinzadeh S, Barati D, He X et al (2012) Response of marrow stromal cells to encapsulation in inert hydrolytically degradable polyethylene glycol hydrogels. J Tissue Eng Regen Med 6:209

    Google Scholar 

  39. Moeinzadeh S, Jabbari E (2012) Mesoscale simulation of the effect of a lactide segment on the nanostructure of star poly(ethylene glycol-co-lactide)-acrylate macromonomers in aqueous solution. J Phys Chem B 116:1536–1543

    Article  Google Scholar 

  40. Posocco P, Fermeglia M, Pricl S (2010) Morphology prediction of block copolymers for drug delivery by mesoscale simulations. J Mater Chem 20:7742–7753

    Article  Google Scholar 

  41. Sarvestani AS, He X, Jabbari E (2007) Viscoelastic characterization and modeling of gelation kinetics of injectable in situ cross-linkable poly(lactide-co-ethylene oxide-co-fumarate) hydrogels. Biomacromolecules 8:406–415

    Article  Google Scholar 

  42. Holmes TC, de Lacalle S, Su X et al (2000) Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci USA 97:6728–6733

    Article  Google Scholar 

  43. Zhang SG, Holmes T, Lockshin C et al (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci USA 90:3334–3338

    Article  Google Scholar 

  44. Zhang SG, Holmes TC, Dipersio CM et al (1995) Self-complementary oligopeptide matrices support mammalian-cell attachment. Biomaterials 16:1385–1393

    Article  Google Scholar 

  45. Kisiday J, Jin M, Kurz B et al (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair. Proc Natl Acad Sci USA 99:9996–10001

    Article  Google Scholar 

  46. Caplan MR, Schwartzfarb EM, Zhang SG et al (2002) Control of self-assembling oligopeptide matrix formation through systematic variation of amino acid sequence. Biomaterials 23:219–227

    Article  Google Scholar 

  47. Rughani RV, Salick DA, Lamm MS et al (2009) Folding, self-assembly, and bulk material properties of a de novo designed three-stranded beta-sheet hydrogel. Biomacromolecules 10:1295–1304

    Article  Google Scholar 

  48. Santoso S, Hwang W, Hartman H et al (2002) Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Lett 2:687–691

    Article  Google Scholar 

  49. Vauthey S, Santoso S, Gong HY et al (2002) Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc Natl Acad Sci USA 99:5355–5360

    Article  Google Scholar 

  50. Zhang SM, Greenfield MA, Mata A et al (2010) A self-assembly pathway to aligned monodomain gels. Nature Mater 9:594–601

    Article  Google Scholar 

  51. Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci USA 99:5133–5138

    Article  Google Scholar 

  52. Luo JN, Tong YW (2011) Self-assembly of collagen-mimetic peptide amphiphiles into biofunctional nanofiber. ACS Nano 5:7739–7747

    Article  Google Scholar 

  53. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684–1688

    Article  Google Scholar 

  54. Niece KL, Czeisler C, Sahni V et al (2008) Modification of gelation kinetics in bioactive peptide amphiphiles. Biomaterials 29:4501–4509

    Article  Google Scholar 

  55. Anderson JM, Andukuri A, Lim DJ et al (2009) Modulating the gelation properties of self-assembling peptide amphiphiles. ACS Nano 3:3447–3454

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to E. Jabbari from the National Science Foundation (CBET0756394, CBET0931998, DMR1049381); the National Institutes of Health (DE19180), and the Arbeitsgemeinschaft Fur Osteosynthesefragen (AO) Foundation (C10-44J).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaiel Jabbari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moeinzadeh, S., Jabbari, E. (2014). Nanostructure Formation in Hydrogels. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_62

Download citation

Publish with us

Policies and ethics