Skip to main content

Aptamer-Functionalized Nanomaterials for Biological and Biomedical Applications

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties
  • 7063 Accesses

Abstract

Nanomaterials have been extensively studied in a variety of fields ranging from energy conversion to clinical diagnosis. In this chapter, we focus our discussion on aptamer-functionalized nanomaterials. Nucleic acid aptamers are an emerging class of synthetic affinity molecules with numerous merits such as high binding specificity, high binding affinity, small sizes, and stable structures. Therefore, the integration of aptamers and nanomaterials holds great potential for the development of novel nanotechnology platforms for applications of various fields such as molecular detection, cell imaging and isolation, drug delivery, and integrated imaging and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937

    Article  Google Scholar 

  2. Lu AH et al (2007) Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244

    Article  Google Scholar 

  3. Xia YN et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389

    Article  Google Scholar 

  4. Hillaireau H, Couvreur P (2009) Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66(17):2873–2896

    Article  Google Scholar 

  5. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478

    Article  Google Scholar 

  6. Medintz IL et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Article  Google Scholar 

  7. Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018

    Article  Google Scholar 

  8. Reddy LH et al (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878

    Article  Google Scholar 

  9. Pouliquen D et al (1991) Iron-oxide nanoparticles for use as an MRI contrast agent – pharmacokinetics and metabolism. Magn Reson Imaging 9(3):275–283

    Article  Google Scholar 

  10. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782

    Article  Google Scholar 

  11. Ellington AD, Szostak JW (1990) Invitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  Google Scholar 

  12. Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded-DNA molecules that fold into specific ligand-binding structures. Nature 355(6363):850–852

    Article  Google Scholar 

  13. Daniels DA et al (2003) A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci USA 100(26):15416–15421

    Article  Google Scholar 

  14. Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    Article  Google Scholar 

  15. Lou X et al (2009) Micromagnetic selection of aptamers in microfluidic channels. Proc Natl Acad Sci USA 106(9):2989–2994

    Article  Google Scholar 

  16. Stoltenburg R et al (2007) SELEX-a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403

    Article  Google Scholar 

  17. Bock LC et al (1992) Selection of single-stranded-DNA molecules that bind and inhibit human thrombin. Nature 355(6360):564–566

    Article  Google Scholar 

  18. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment – RNA ligands to bacteriophage-T4 DNA-polymerase. Science 249(4968):505–510

    Article  Google Scholar 

  19. Morris KN et al (1998) High affinity ligands from in vitro selection: complex targets. Proc Natl Acad Sci USA 95(6):2902–2907

    Article  Google Scholar 

  20. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45(9):1628–1650

    Google Scholar 

  21. Chames P et al (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157(2):220–233

    Article  Google Scholar 

  22. Evan GI et al (1985) Isolation of monoclonal-antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 5(12):3610–3616

    Google Scholar 

  23. Iliuk AB et al (2011) Aptamer in bioanalytical applications. Anal Chem 83(12):4440–4452

    Article  Google Scholar 

  24. Song SP et al (2008) Aptamer-based biosensors. Trends Analyt Chem 27(2):108–117

    Article  Google Scholar 

  25. McNay G et al (2011) Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS): a review of applications. Appl Spectrosc 65(8):825–837

    Article  Google Scholar 

  26. Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106

    Article  Google Scholar 

  27. Wang Y et al (2007) SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Chem Commun (48):5220–5222

    Article  Google Scholar 

  28. Tasset DM et al (1997) Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J Mol Biol 272(5):688–698

    Article  Google Scholar 

  29. Padmanabhan K et al (1993) The strucure of alpha-thrombin inhibited by a 15-mer single-stranded-DNA aptamer. Journal of Biological Chemistry 268(24): 17651–17654

    Google Scholar 

  30. Kim NH et al (2010) Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification. Nano Lett 10(10):4181–4185

    Article  Google Scholar 

  31. Choi JH et al (2006) Aptamer-capped nanocrystal quantum dots: a new method for label-free protein detection. J Am Chem Soc 128(49):15584–15585

    Article  Google Scholar 

  32. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21(11):1387–1395

    Article  Google Scholar 

  33. Ha T et al (1996) Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Nat Acad Sci USA 93(13):6264–6268

    Article  Google Scholar 

  34. Clapp AR et al (2004) Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc 126(1):301–310

    Article  Google Scholar 

  35. Levy M et al (2005) Quantum-dot aptamer beacons for the detection of proteins. Chembiochem 6(12):2163–2166

    Article  Google Scholar 

  36. Morales-Narvaez E et al (2012) Simple forster resonance energy transfer evidence for the ultrahigh quantum dot quenching efficiency by graphene oxide compared to other carbon structures. Carbon 50(8):2987–2993

    Article  Google Scholar 

  37. Chang H et al (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82(6):2341–2346

    Article  Google Scholar 

  38. Dong H et al (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82(13):5511–5517

    Article  Google Scholar 

  39. Freeman R et al (2009) Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing. Analyst 134(4):653–656

    Article  Google Scholar 

  40. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface Plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797–4862

    Article  Google Scholar 

  41. Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1(1):246–252

    Article  Google Scholar 

  42. Huang CC et al (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77(17):5735–5741

    Article  Google Scholar 

  43. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562

    Article  Google Scholar 

  44. Zhang J et al (2008) Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 4(8):1196–1200

    Article  Google Scholar 

  45. Wang L et al (2006) Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun (36):3780–3782

    Article  Google Scholar 

  46. Li HX, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA 101(39):14036–14039

    Article  Google Scholar 

  47. Xia F et al (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci USA 107(24):10837–10841

    Article  Google Scholar 

  48. Zayats M et al (2006) Label-free and reagentless aptamer-based sensors for small molecules. J Am Chem Soc 128(42):13666–13667

    Article  Google Scholar 

  49. So HM et al (2005) Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J Am Chem Soc 127(34):11906–11907

    Article  Google Scholar 

  50. Maehashi K et al (2009) Aptamer-based label-free immunosensors using carbon nanotube field-effect transistors. Electroanalysis 21(11):1285–1290

    Article  Google Scholar 

  51. Golub E et al (2009) Electrochemical, photoelectrochemical, and surface Plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles. Anal Chem 81(22):9291–9298

    Article  Google Scholar 

  52. Hansen JA et al (2006) Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc 128(7):2228–2229

    Article  Google Scholar 

  53. Zhou L et al (2007) Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein. Anal Chem 79(19):7492–7500

    Article  Google Scholar 

  54. Shangguan D et al (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA 103(32):11838–11843

    Article  Google Scholar 

  55. Huang YF et al (2008) Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 80(3):567–572

    Article  Google Scholar 

  56. Wang CH et al (2011) Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging. Langmuir 27(11):6971–6976

    Article  Google Scholar 

  57. Lupold SE et al (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62(14):4029–4033

    Google Scholar 

  58. Chu TC et al (2006) Labeling tumor cells with fluorescent nanocrystal-aptamer bioconjugates. Biosens Bioelectron 21(10):1859–1866

    Article  Google Scholar 

  59. Hwang do W et al (2010) A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med 51(1):98–105

    Article  Google Scholar 

  60. Bates PJ et al (1999) Antiproliferative activity of G-rich oligonucleotides correlates with protein binding. J Biol Chem 274(37):26369–26377

    Article  Google Scholar 

  61. Herr JK et al (2006) Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 78(9):2918–2924

    Article  Google Scholar 

  62. Medley CD et al (2011) Aptamer-conjugated nanoparticles for cancer cell detection. Anal Chem 83(3):727–734

    Article  Google Scholar 

  63. Smith JE et al (2007) Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal Chem 79(8):3075–3082

    Article  Google Scholar 

  64. Medley CD et al (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80(4):1067–1072

    Article  Google Scholar 

  65. Liu GD et al (2009) Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal Chem 81(24):10013–10018

    Article  Google Scholar 

  66. Zheng D et al (2009) Aptamer Nano-flares for Molecular Detection in Living Cells. Nano Lett 9(9): 3258–3261

    Article  Google Scholar 

  67. Wang Y et al (2010) Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132(27):9274–9276

    Article  Google Scholar 

  68. Nielsen LJ et al (2010) Aptamers embedded in polyacrylamide nanoparticles: a tool for in vivo metabolite sensing. Acs Nano 4(8):4361–4370

    Article  Google Scholar 

  69. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822

    Article  Google Scholar 

  70. Cho KJ et al (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316

    Article  Google Scholar 

  71. Gref R et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263(5153):1600–1603

    Article  Google Scholar 

  72. Farokhzad OC et al (2004) Nanopartide-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64(21):7668–7672

    Article  Google Scholar 

  73. Farokhzad OC et al (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 103(16):6315–6320

    Article  Google Scholar 

  74. Gu F et al (2008) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci USA 105(7):2586–2591

    Article  Google Scholar 

  75. Kang HZ et al (2010) A liposome-based nanostructure for aptamer directed delivery. Chem Commun 46(2):249–251

    Article  Google Scholar 

  76. Wu Y et al (2010) DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci USA 107(1):5–10

    Article  Google Scholar 

  77. Luo YL et al (2011) Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. Acs Nano 5(10):7796–7804

    Article  Google Scholar 

  78. Kang HZ et al (2011) Near-infrared light-responsive core-shell nanogels for targeted drug delivery. Acs Nano 5(6):5094–5099

    Article  Google Scholar 

  79. Yang XJ et al (2012) Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv Mater 24(21):2890–2895

    Article  Google Scholar 

  80. Bagalkot V et al (2007) Quantum dot - aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070

    Article  Google Scholar 

  81. Soontornworajit B, Wang Y (2011) Nucleic acid aptamers for clinical diagnosis: cell detection and molecular imaging. Anal Bioanal Chem 399(4):1591–1599

    Article  Google Scholar 

  82. Wang AZ et al (2008) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3(9):1311–1315

    Article  Google Scholar 

  83. Kim D et al (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. Acs Nano 4(7):3689–3696

    Article  Google Scholar 

  84. Fan Z et al (2012) Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells. Acs Nano 6(2):1065–1073

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yike Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huang, Y., Wang, Y. (2014). Aptamer-Functionalized Nanomaterials for Biological and Biomedical Applications. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_51

Download citation

Publish with us

Policies and ethics