Skip to main content

Electrical and Optical Enhancement Properties of Metal/Semimetal Nanostructures for Metal Oxide UV Photodetectors

  • Chapter
  • First Online:
  • 7100 Accesses

Abstract

Ultraviolet (UV) photodetectors are of a great interest to a wide range of industrial, military, environmental, and biomedical applications. Because of many advantages including low cost, ease of fabrication, high sensitivity, and strong radiation hardness, metal oxide nanostructures are considered promising materials for UV detection. A review of the most recent developments in the field of metal oxide UV photodetectors is divided into two sections. The first section introduces the basic properties of various wide bandgap metal oxides, the UV detection mechanism, and the figures of merit of UV photodetectors. Performance comparison of UV photodetectors using various metal oxide nanostructures and device configurations is also presented in the first section. The second section is devoted to metal/semimetal nanostructures for the performance enhancement of UV photodetectors, which illustrate enhanced devices using either surface plasmon resonance or a carrier transfer mechanism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Blank TV, Gol’dberg YA (2003) Semiconductor photoelectric converters for the ultraviolet region of the spectrum. Semiconductors 37:999–1030

    Article  Google Scholar 

  2. Zhang SK, Wang WB, Shtau I, Yun F, He L, Morkoc H, Zhou X, Tamargo M, Alfano RR (2002) Back-illuminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain. Appl Phys Lett 81(25):4862–4864. doi:10.1063/1.1526166

    Article  Google Scholar 

  3. Xu GY, Salvador A, Kim W, Fan Z, Lu C, Tang H, Morkoc H, Smith G, Estes M, Goldenberg B, Yang W, Krishnankutty S (1997) High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n)structures. Appl Phys Lett 71(15):2154–2156

    Article  Google Scholar 

  4. Chen X, Zhu H, Cai J, Wu Z (2007) High-performance 4H-SiC-based ultraviolet p-i-n photodetector. J Appl Phys 102(2):024505. doi:10.1063/1.2747213

    Article  Google Scholar 

  5. Whitfield MD, Chan SSM, Jackman RB (1996) Thin film diamond photodiode for ultraviolet light detection. Appl Phys Lett 68(3):290–292. doi:10.1063/1.116062

    Article  Google Scholar 

  6. Walker D, Monroy E, Kung P, Wu J, Hamilton M, Sanchez FJ, Diaz J, Razeghi M (1999) High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN. Appl Phys Lett 74(5):762. doi:10.1063/1.123303

    Article  Google Scholar 

  7. Osinsky A, Gangopadhyay S, Gaska R, Williams B, Khan MA, Kuksenkov D, Temkin H (1997) Low noise p-π-n GaN ultraviolet photodetectors. Appl Phys Lett 71(16):2334. doi:10.1063/1.120023

    Article  Google Scholar 

  8. Monroy E, Omnès F, Calle F (2003) Wide-bandgap semiconductor ultraviolet photodetectors. Semicond Sci Technol 18(4):R33–R51

    Article  Google Scholar 

  9. Liao M, Koide Y, Alvarez J (2005) Thermally stable visible-blind diamond photodiode using tungsten carbide Schottky contact. Appl Phys Lett 87(2):022105-022105-022103. doi:10.1063/1.1992660

    Article  Google Scholar 

  10. Li J, Fan ZY, Dahal R, Nakarmi ML, Lin JY, Jiang HX (2006) 200 nm deep ultraviolet photodetectors based on AlN. Appl Phys Lett 89(21):213510–213513

    Article  Google Scholar 

  11. Chen X, Yang W, Wu Z (2006) Visible blind p–i–n ultraviolet photodetector fabricated on 4H-SiC. Microelectron Eng 83(1):104–106. doi:http://dx.doi.org/10.1016/j.mee.2005.10.034

    Google Scholar 

  12. Chen Q, Khan MA, Sun CJ, Yang JW (1995) Visible-blind ultraviolet photodetectors based on GaN p-n junctions. Electron Lett 31(20):1781–1782. doi:10.1049/el:19951190

    Article  Google Scholar 

  13. Cárdenas JR, de Vasconcelos EA, de Azevedo WM, da Silva EF, Pepe I, da Silva AF, Ribeiro SS, Silva KA (2008) A conducting polymer–silicon heterojunction as a new ultraviolet photodetector. Appl Surf Sci 255(3):688–690. doi:http://dx.doi.org/10.1016/j.apsusc.2008.07.038

    Google Scholar 

  14. Yu G, Pakbaz K, Heeger AJ (1994) Semiconducting polymer diodes: large size, low cost photodetectors with excellent visible–ultraviolet sensitivity. Appl Phys Lett 64(25):3422. doi:10.1063/1.111260

    Article  Google Scholar 

  15. Wu JM, Chen YR, Lin YH (2011) Rapidly synthesized ZnO nanowires by ultraviolet decomposition process in ambient air for flexible photodetector. Nanoscale 3(3):1053–1058. doi:10.1039/c0nr00595a

    Article  Google Scholar 

  16. Prades JD, Hernandez-Ramirez F, Jimenez-Diaz R, Manzanares M, Andreu T, Cirera A, Romano-Rodriguez A, Morante JR (2008) The effects of electron–hole separation on the photoconductivity of individual metal oxide nanowires. Nanotechnology 19(46):465501. doi:10.1088/0957-4484/19/46/465501

    Article  Google Scholar 

  17. Young SJ, Ji LW, Chang SJ, Liang SH, Lam KT, Fang TH, Chen KJ, Du XL, Xue QK (2008) ZnO-based MIS photodetectors. Sens Act A: Phys 141(1):225–229. doi:10.1016/j.sna.2007.06.003

    Article  Google Scholar 

  18. Qin L, Shing C, Sawyer S (2011) Metal–Semiconductor–Metal ultraviolet photodetectors based on zinc-oxide colloidal nanoparticles. IEEE Electron Device Lett 32(1):51–53

    Article  Google Scholar 

  19. Qin L, Shao D, Shing C, Sawyer S (2013) Wavelength selective p-GaN/ZnO colloidal nanoparticle heterojunction photodiode. Appl Phys Lett 102(7):071106. doi:10.1063/1.4793210

    Article  Google Scholar 

  20. Campos LC, Guimarães MHD, Goncalves AMB, de Oliveira S, Lacerda RG (2013) ZnO UV photodetector with controllable quality factor and photosensitivity. AIP Advances 3(2):022104. doi:10.1063/1.4790633

    Article  Google Scholar 

  21. Shinde SS, Rajpure KY (2011) High-performance UV detector based on Ga-doped zinc oxide thin films. Appl Surf Sci 257(22):9595–9599. doi:10.1016/j.apsusc.2011.06.073

    Article  Google Scholar 

  22. Bi Z, Zhang J, Bian X, Wang D, Zhang X, Zhang W, Hou X (2008) A high-performance ultraviolet photoconductive detector based on a ZnO film grown by RF sputtering. J Electron Mater 37(5):760–763

    Article  Google Scholar 

  23. Liu Y, Gorla CR, Liang S, Emanetoglu N, Lu Y, Shen H, Wraback M (2000) Ultraviolet photodetectors based on epitaxial ZnO films grown by MOCVD. J Electron Mater 29(1):69–74

    Article  Google Scholar 

  24. Liang S, Sheng H, Liu YG, Huo Z, Lu Y, Shen H (2001) ZnO schottky ultraviolet photodetectors. J Cryst Growth 22:110–113

    Article  Google Scholar 

  25. Kind H, Yun H, Messer B, Law M, Yang P (2002) Nanowire ultraviolet photodetectors and optical switches. Adv Mater 14(2):158–160

    Article  Google Scholar 

  26. Soci C, Zhang A, Xiang B, Dayeh SA, Aplin DPR, Park J, Bao XY, Lo YH, Wang D (2007) ZnO nanowire UV photodetectors with high internal gain. Nano Lett 7(4):1003–1009

    Article  Google Scholar 

  27. Jin Y, Wang J, Sun B, Blakesley JC, Greenham NC (2008) Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett 8(6):1649–1653

    Article  Google Scholar 

  28. Lin Y-Y, Chen C-W, Yen W-C, Su W-F, Ku C-H, Wu J-J (2008) Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes. Appl Phys Lett 92(23):233301. doi:10.1063/1.2940594

    Article  Google Scholar 

  29. Li H-G, Wu G, Shi M-M, Yang L-G, Chen H-Z, Wang M (2008) ZnO/poly(9,9-dihexylfluorene) based inorganic/organic hybrid ultraviolet photodetector. Appl Phys Lett 93(15):153309. doi:10.1063/1.3003881

    Article  Google Scholar 

  30. Venkataprasad Bhat S, Vivekchand SRC, Govindaraj A, Rao CNR (2009) Photoluminescence and photoconducting properties of ZnO nanoparticles. Solid State Commun 149(13–14):510–514. doi:10.1016/j.ssc.2009.01.014

    Article  Google Scholar 

  31. Jun JH, Seong H, Cho K, Moon B-M, Kim S (2009) Ultraviolet photodetectors based on ZnO nanoparticles. Ceram Int 35(7):2797–2801. doi:10.1016/j.ceramint.2009.03.032

    Article  Google Scholar 

  32. Lu C-Y, Chang S-P, Chang S-J, Hsueh T-J, Hsu C-L, Chiou Y-Z, Chen IC (2009) A lateral ZnO nanowire UV photodetector prepared on a ZnO: Ga/glass template. Semicond Sci Technol 24(7):075005. doi:10.1088/0268-1242/24/7/075005

    Article  Google Scholar 

  33. Chen KJ, Hung FY, Chang SJ, Young SJ (2009) Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin films. J Alloys Compd 479(1–2):674–677. doi:10.1016/j.jallcom.2009.01.026

    Article  Google Scholar 

  34. Pourret A, Guyot-Sionnest P, Elam JW (2009) Atomic layer deposition of ZnO in quantum dot thin films. Adv Mater 21(2):232–235. doi:10.1002/adma.200801313

    Article  Google Scholar 

  35. Li H, Fan C, Wu G, Chen H, Wang M (2010) Solution-processed hybrid bilayer photodetectors with rapid response to ultraviolet radiation. J Phys D Appl Phys 43(42):425101. doi:10.1088/0022-3727/43/42/425101

    Article  Google Scholar 

  36. Qin L, Shing C, Sawyer S, Dutta PS (2011) Enhanced ultraviolet sensitivity of zinc oxide nanoparticle photoconductors by surface passivation. Opt Mater 33(3):359–362. doi:10.1016/j.optmat.2010.09.020

    Article  Google Scholar 

  37. Rostami A, Dolatyari M, Amini E, Rasooli H, Baghban H, Miri S (2013) Sensitive, fast, solution-processed ultraviolet detectors based on passivated zinc oxide nanorods. Chemphyschem: A Eur J Chem Phys Phys Chem 14(3):554–559. doi:10.1002/cphc.201200660

    Article  Google Scholar 

  38. Sharma S, Tran A, Nalamasu O, Dutta PS (2006) Spin-coated ZnO thin films using ZnO nano-colloid. J Electron Mater 35(6):1237–1240

    Article  Google Scholar 

  39. Liang C, Meng G, Lei Y, Phillipp F, Zhang L (2001) Catalytic growth of semiconducting In2O3 nanofibers. Adv Mater 13(17):1330–1333

    Article  Google Scholar 

  40. Gali P, Kuo F-L, Shepherd N, Philipose U (2012) Role of oxygen vacancies in visible emission and transport properties of indium oxide nanowires. Semicond Sci Technol 27(1):015015. doi:10.1088/0268-1242/27/1/015015

    Article  Google Scholar 

  41. Guha P, Kar S, Chaudhuri S (2004) Direct synthesis of single crystalline In[sub 2]O[sub 3] nanopyramids and nanocolumns and their photoluminescence properties. Appl Phys Lett 85(17):3851. doi:10.1063/1.1808886

    Article  Google Scholar 

  42. Jean S-T, Her Y-C (2010) Growth mechanism and photoluminescence properties of In2O3 nanotowers. Cryst Growth Des 10(5):2104–2110. doi:10.1021/cg9011839

    Article  Google Scholar 

  43. Li C, Zhang D, Han S, Liu X, Tang T, Zhou C (2003) Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties. Adv Mater 15(2):143–146

    Article  Google Scholar 

  44. Qin L, Dutta PS, Sawyer S (2012) Photoresponse of indium oxide particulate-based thin films fabricated using milled nanorods grown by the self-catalytic vapor–liquid–solid process. Semicond Sci Technol 27(4):045005. doi:10.1088/0268-1242/27/4/045005

    Article  Google Scholar 

  45. Shao D, Qin L, Sawyer S (2013) Optical properties of polyvinyl alcohol (PVA) coated In2O3 nanoparticles. Opt Mater 35(3):563–566. doi:10.1016/j.optmat.2012.10.026

    Article  Google Scholar 

  46. Zhang D, Li C, Han S, Liu X, Tang T, Jin W, Zhou C (2003) Electronic transport studies of single-crystalline In[sub 2]O[sub 3] nanowires. Appl Phys Lett 82(1):112. doi:10.1063/1.1534938

    Article  Google Scholar 

  47. Zhang D, Li C, Han S, Liu X, Tang T, Jin W, Zhou C (2003) Ultraviolet photodetection properties of indium oxide nanowires. Appl Phys A: Mater Sci Process 77(1):163–166. doi:10.1007/s00339-003-2099-3

    Article  Google Scholar 

  48. Shao D, Qin L, Sawyer S (2012) Near ultraviolet photodetector fabricated from polyvinyl-alcohol coated In2O3 nanoparticles. Appl Surf Sci 261:123–127. doi:10.1016/j.apsusc.2012.07.111

    Article  Google Scholar 

  49. Hu L, Yan J, Liao M, Wu L, Fang X (2011) Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors. Small 7(8):1012–1017. doi:10.1002/smll.201002379

    Article  Google Scholar 

  50. Lin C-H, Chen R-S, Chen T-T, Chen H-Y, Chen Y-F, Chen K-H, Chen L-C (2008) High photocurrent gain in SnO[sub 2] nanowires. Appl Phys Lett 93(11):112115. doi:10.1063/1.2987422

    Article  Google Scholar 

  51. Mathur S, Barth S, Shen H, Pyun JC, Werner U (2005) Size-dependent photoconductance in SnO2 nanowires. Small 1(7):713–717. doi:10.1002/smll.200400168

    Article  Google Scholar 

  52. Liu Z, Zhang D, Song H, Li C, Tang T, Jin W, Liu X, Lei B, Zhou C (2003) Laser ablation synthesis and electron transport studies of tin oxide nanowires. Adv Mater 15(20):1754–1757

    Article  Google Scholar 

  53. Chen Y, Zhu C, Cao M, Wang T (2007) Photoresponse of SnO2 nanobelts grown in situ on interdigital electrodes. Nanotechnology 18(28):285502. doi:10.1088/0957-4484/18/28/285502

    Article  Google Scholar 

  54. Li Y, Tokizono T, Liao M, Zhong M, Koide Y, Yamada I, Delaunay J-J (2010) Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection. Adv Funct Mater 20(22):3972–3978. doi:10.1002/adfm.201001140

    Article  Google Scholar 

  55. Feng P, Xue XY, Liu YG, Wan Q, Wang TH (2006) Achieving fast oxygen response in individual β-Ga[sub 2]O[sub 3] nanowires by ultraviolet illumination. Appl Phys Lett 89(11):112114. doi:10.1063/1.2349278

    Article  Google Scholar 

  56. Feng P, Zhang JY, Li QH, Wang TH (2006) Individual β-Ga[sub 2]O[sub 3] nanowires as solar-blind photodetectors. Appl Phys Lett 88(15):153107. doi:10.1063/1.2193463

    Article  Google Scholar 

  57. Huang K, Zhang Q, Yang F, He D (2010) Ultraviolet photoconductance of a single hexagonal WO3 nanowire. Nano Res 3(4):281–287. doi:10.1007/s12274-010-1031-3

    Article  Google Scholar 

  58. Li L, Zhang Y, Fang X, Zhai T, Liao M, Sun X, Koide Y, Bando Y, Golberg D (2011) WO3 nanowires on carbon papers: electronic transport, improved ultraviolet-light photodetectors and excellent field emitters. J Mater Chem 21(18):6525. doi:10.1039/c0jm04557h

    Article  Google Scholar 

  59. Fu XQ, Wang C, Feng P, Wang TH (2007) Anomalous photoconductivity of CeO[sub 2] nanowires in air. Appl Phys Lett 91(7):073104. doi:10.1063/1.2771090

    Article  Google Scholar 

  60. Chen H, Hu L, Fang X, Wu L (2012) General fabrication of monolayer SnO2 nanonets for high-performance ultraviolet photodetectors. Adv Funct Mater 22(6):1229–1235. doi:10.1002/adfm.201102506

    Article  Google Scholar 

  61. Qiaoqiang G, Liangcheng Z, Dierolf V, Bartoli FJ (2009) UV plasmonic structures: direct observations of UV extraordinary optical transmission and localized field enhancement through nanoslits. IEEE Photonics J 1(4):245–253. doi:10.1109/jphot.2009.2035998

    Article  Google Scholar 

  62. Liang A, Liu Q, Wen G, Jiang Z (2012) The surface-plasmon-resonance effect of nanogold/silver and its analytical applications. TrAC Trends Anal Chem 37:32–47. doi:10.1016/j.trac.2012.03.015

    Article  Google Scholar 

  63. Wood RW (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos Mag 4(21):396–402

    Article  Google Scholar 

  64. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: form theory to applications. Chem Rev 107:4797–4862

    Article  Google Scholar 

  65. Fano U (1941) The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J Opt Soc Am 31:213–222

    Article  Google Scholar 

  66. Crouse D, Keshavareddy P (2005) Role of optical and surface plasmon modes in enhanced transmission and applications. Opt Express 13(20):7760–7771

    Article  Google Scholar 

  67. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  Google Scholar 

  68. Crouse D (2005) Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications. IEEE Trans Electron Devices 52(11):2365–2373

    Article  Google Scholar 

  69. Treacy M (2002) Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings. Phys Rev B 66(19):195105. doi:10.1103/PhysRevB.66.195105

    Article  Google Scholar 

  70. Collin S, Pardo F, Tessier R, Pelouard J-L (2002) Horizontal and vertical surface resonances in transmission metallic gratings. J Opt A: Appl Opt 4:5154–5160

    Article  Google Scholar 

  71. Barbara A, Quémerais P, Bustarret E, Lopez-Rios T (2002) Optical transmission through subwavelength metallic gratings. Phys Rev B 66(16):161403. doi:10.1103/PhysRevB.66.161403

    Article  Google Scholar 

  72. García-Vidal F, Martín-Moreno L (2002) Transmission and focusing of light in one-dimensional periodically nanostructured metals. Phys Rev B 66(15):155412. doi:10.1103/PhysRevB.66.155412

    Article  Google Scholar 

  73. Cao Q, Lalanne P (2002) Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys Rev Lett 88(5):057403. doi:10.1103/PhysRevLett.88.057403

    Article  Google Scholar 

  74. Collin S, Pardo F, Teissier R, Pelouard J-L (2004) Efficient light absorption in metal–semiconductor–metal nanostructures. Appl Phys Lett 85(2):194. doi:10.1063/1.1771467

    Article  Google Scholar 

  75. Collin SP, Pardo F, Pelouard J-L (2003) Resonant-cavity-enhanced subwavelength metal–semiconductor–metal photodetector. Appl Phys Lett 83(8):1521. doi:10.1063/1.1604942

    Article  Google Scholar 

  76. Stuart HR, Hall DG (1998) Island size effects in nanoparticle-enhanced photodetectors. Appl Phys Lett 73(26):3815. doi:10.1063/1.122903

    Article  Google Scholar 

  77. Liu Y, Cheng R, Liao L, Zhou H, Bai J, Liu G, Liu L, Huang Y, Duan X (2011) Plasmon resonance enhanced multicolour photodetection by graphene. Nat Commun 2:579. doi:10.1038/ncomms1589

    Article  Google Scholar 

  78. Butun S, Cinel NA, Ozbay E (2012) LSPR enhanced MSM UV photodetectors. Nanotechnology 23(44):444010. doi:10.1088/0957-4484/23/44/444010

    Article  Google Scholar 

  79. Porto JA, Garcia-Vidal FJ, Pendry JB (1999) Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 83(14):2845–2848

    Article  Google Scholar 

  80. Burc S, Tidin O, Okyay K (2012) Plasmonic nanoslit array enhanced metal–semiconductor–metal optical detectors. IEEE Photon Technol Lett 324(7):548–550

    Google Scholar 

  81. Yu Z, Veronis G, Fan S, Brongersma ML (2006) Design of midinfrared photodetectors enhanced by surface plasmons on grating structures. Appl Phys Lett 89(15):151116. doi:10.1063/1.2360896

    Article  Google Scholar 

  82. Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86(6):063106. doi:10.1063/1.1855423

    Article  Google Scholar 

  83. Zhang DH (1995) Fast photoresponse and the related change of crystallite barriers for ZnO films deposited by RF sputtering. J Phys D Appl Phys 28:1273–1277

    Article  Google Scholar 

  84. Studenikin SA, Golego N, Cocivera M (2000) Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films. J Appl Phys 87(5):2413. doi:10.1063/1.372194

    Article  Google Scholar 

  85. Bikowski A, Ellmer K (2013) Electrical transport in hydrogen-aluminium Co-doped ZnO and Zn1 − xMgxO films: relation to film structure and composition. J Appl Phys 113(5):053710. doi:10.1063/1.4790314

    Article  Google Scholar 

  86. Li Y, Huang Q, Bi X (2013) The change of electrical transport characterizations in Ga doped ZnO films with various thicknesses. J Appl Phys 113(5):053702. doi:10.1063/1.4789985

    Article  Google Scholar 

  87. Lee JY, Choi YS, Kim JH, Park MO, Im S (2002) Optimizing n-ZnO/p-Si heterojunctions for photodiode applications. Thin Solid Films 403–404:553–557

    Article  Google Scholar 

  88. Shao D, Yu M, Lian J, Sawyer S (2012) Heterojunction photodiode fabricated from hydrogen treated ZnO nanowires grown on p-silicon substrate. Appl Phys Lett 101(21):211103. doi:10.1063/1.4767679

    Article  Google Scholar 

  89. Yadav HK, Sreenivas K, Gupta V (2007) Enhanced response from metal/ZnO bilayer ultraviolet photodetector. Appl Phys Lett 90(17):172113. doi:10.1063/1.2733628

    Article  Google Scholar 

  90. Tzeng S-K, Hon M-H, Leu I-C (2012) Improving the performance of a Zinc Oxide nanowire ultraviolet photodetector by adding silver nanoparticles. J Electrochem Soc 159(4):H440. doi:10.1149/2.088204jes

    Article  Google Scholar 

  91. Yang M-H, Liang T, Peng Y-C, Chen Q (2007) Synthesis and characterization of a nanocomplex of ZnO nanoparticles attached to carbon nanotubes. Acta Phys-Chim Sin 23(2):145–151

    Article  Google Scholar 

  92. Yang HY, Son DI, Kim TW, Lee JM, Park WI (2010) Enhancement of the photocurrent in ultraviolet photodetectors fabricated utilizing hybrid polymer-ZnO quantum dot nanocomposites due to an embedded graphene layer. Org Electron 11(7):1313–1317. doi:10.1016/j.orgel.2010.04.009

    Article  Google Scholar 

  93. Wu J, Bai S, Shen X, Jiang L (2010) Preparation and characterization of graphene/CdS nanocomposites. Appl Surf Sci 257(3):747–751. doi:10.1016/j.apsusc.2010.07.058

    Article  Google Scholar 

  94. Shao D, Yu M, Lian J, Sawyer S (2013) Ultraviolet photodetector fabrication from WO3 nano-disks/graphene nanocomposite material. Nanotechnology 24:295701. doi:10.1088/0957-4484/24/29/295701

    Google Scholar 

  95. Robel I, Bunker BA, Kamat PV (2005) Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies: photoinduced charge-transfer interactions. Adv Mater 17(20):2458–2463. doi:10.1002/adma.200500418

    Article  Google Scholar 

  96. Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10(7):2727–2733. doi:10.1021/nl101723g

    Article  Google Scholar 

  97. Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, Chang Y, Wang S, Gong Q, Liu Y (2010) A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv Mater 22(1):103–106. doi:10.1002/adma.200901920

    Article  Google Scholar 

  98. Shao D, Yu M, Lian J, Sawyer S (2013) Heterojunction photodiode fabricated from multiwalled carbon nanotube/ZnO nanowire/p-silicon composite structure. Appl Phys Lett 102(2):021107. doi:10.1063/1.4776691

    Article  Google Scholar 

  99. Dali S, Sawyer S, Tao H, Mingpeng Y, Jie L (2012) Photoconductive enhancement effects of graphene quantum dots on ZnO nanoparticle photodetectors. In: Lester Eastman conference on high performance devices (LEC), Brown University, Providence RI, 7–9 Aug 2012, pp 1–4. doi:10.1109/lec.2012.6410972

    Google Scholar 

  100. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491

    Article  Google Scholar 

  101. Shao D, Yu M, Sun T, Lian J, Sawyer S (2013) High responsivity, fast ultraviolet photodetector fabricated from ZnO nanoparticle-graphene core/shell structure. Nanoscale 5:3664–3667

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shayla Sawyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sawyer, S., Shao, D. (2014). Electrical and Optical Enhancement Properties of Metal/Semimetal Nanostructures for Metal Oxide UV Photodetectors. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_49

Download citation

Publish with us

Policies and ethics